472 research outputs found

    Kalman filters for leak diagnosis in pipelines: brief history and future research

    Get PDF
    The purpose of this paper is to provide a structural review of the progress made on the detection and localization of leaks in pipelines by using approaches based on the Kalman filter. To the best of the author’s knowledge, this is the first review on the topic. In particular, it is the first to try to draw the attention of the leak detection community to the important contributions that use the Kalman filter as the core of a computational pipeline monitoring system. Without being exhaustive, the paper gathers the results from different research groups such that these are presented in a unified fashion. For this reason, a classification of the current approaches based on the Kalman filter is proposed. For each of the existing approaches within this classification, the basic concepts, theoretical results, and relations with the other procedures are discussed in detail. The review starts with a short summary of essential ideas about state observers. Then, a brief history of the use of the Kalman filter for diagnosing leaks is described by mentioning the most outstanding approaches. At last, brief discussions of some emerging research problems, such as the leak detection in pipelines transporting heavy oils; the main challenges; and some open issues are addressed

    An algebraic observer for leak detection and isolation in plastic pipelines

    Get PDF
    In the continuation of authors' studies on leak diagnosis in pipelines, a new model-based Leak Detection and Isolation (LDI) algorithm is designed. This system only uses measures of flow and pressure coming from sensors placed at the ends of a pipeline. The present approach is based on a finite nonlinear pipeline model, and extended with variables related to the leak. On this basis, the purpose here is to investigate the use of a so-called algebraic observer to estimate the leak position and its magnitude. The corresponding observer design is thus presented, and its performances are illustrated both with simulation results, and experimental ones, with data taken from a real pipeline prototype.Consejo Nacional de Ciencia y TecnologíaInstitut Universitaire de FranceUniversidad Nacional de Colombi

    Liquid Transport Pipeline Monitoring Architecture Based on State Estimators for Leak Detection and Location

    Get PDF
    This research presents the implementation of optimization algorithms to build auxiliary signals that can be injected as inputs into a pipeline in order to estimate —by using state observers—physical parameters such as the friction or the velocity of sound in the fluid. For the state estimator design, the parameters to be estimated are incorporated into the state vector of a Liénard-type model of a pipeline such that the observer is constructed from the augmented model. A prescribed observability degree of the augmented model is guaranteed by optimization algorithms by building an optimal input for the identification. The minimization of the input energy is used to define the optimality of the input, whereas the observability Gramian is used to verify the observability. Besides optimization algorithms, a novel method, based on a Liénard-type model, to diagnose single and sequential leaks in pipelines is proposed. In this case, the Liénard-type model that describes the fluid behavior in a pipeline is given only in terms of the flow rate. This method was conceived to be applied in pipelines solely instrumented with flowmeters or in conjunction with pressure sensors that are temporarily out of service. The design approach starts with the discretization of the Liénard-type model spatial domain into a prescribed number of sections. Such discretization is performed to obtain a lumped model capable of providing a solution (an internal flow rate) for every section. From this lumped model, a set of algebraic equations (known as residuals) are deduced as the difference between the internal discrete flows and the nominal flow (the mean of the flow rate calculated prior to the leak). The residual closest to zero will indicate the section where a leak is occurring. The main contribution of our method is that it only requires flow measurements at the pipeline ends, which leads to cost reductions. Some simulation-based tes

    Online leak diagnosis in pipelines using an EKF-based and steady-state mixed approach

    Get PDF
    This paper proposes a methodology for leak detection and isolation (LDI) in pipelines based on data fusion from two approaches: a steady-state estimation and an Extended Kalman Filter (EKF). The proposed method considers only pressure head and flow rate measurements at the pipeline ends, which contain intrinsic sensor and process noise. The LDI system is tested in real-time by using an USB data acquisition device that is implemented in MATLAB environment. The effectiveness of the method is analyzed by considering: online detection, location as well as quantification of non-concurrent leaks at different positions. The leak estimation error average is less than 1% of the flow rate and less than 3% in the leakage position. Furthermore, the incorporation of a steady-state estimation shows that the solution of the LDI problem has improved significantly with respect to the one that only considers the EKF estimation. An experimental analysis was also performed on the effectiveness of the proposed approach for different sampling rates and for different leakage positionsPeer ReviewedPostprint (author's final draft

    Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches

    Get PDF
    Pipelines are widely used for the transportation of hydrocarbon fluids over millions of miles all over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distribution depot. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses pipeline leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed. Document type: Articl

    Recent advances in pipeline monitoring and oil leakage detection technologies: principles and approaches.

    Get PDF
    Pipelines are widely used for the transportation of hydrocarbon fluids over millions of miles all over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distribution depot. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses pipeline leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Methods for the Detection of Subterranean Methane Leakage

    Get PDF
    The development of small unmanned aircraft systems (sUAS) has led to a plethora of industry applications. One such application for a sUAS is detecting subterranean methane leakage. The rapid detection of methane will streamline work in industries such as construction and utilities. However, prior to flying a sUAS, the optimal way to detect methane must be determined so that unknown levels of subterranean methane leakage can be detected accurately and efficiently. In this thesis, two methods were used in conjunction to optimize a sUAS method for methane detection. The primary objective was to use hyperspectral data to locate the optimal wavelengths for methane detection for use on a sUAS. This was accomplished in two parts. The first part of the study was a simulated pipeline experiment where a copper pipe and mass flow controller were used to mimic a natural pipeline leak close to the surface. The methane-stressed and healthy vegetation were measured daily using a handheld spectrometer alongside two other forms of stressed vegetation. The analysis of the data showed potentially important variation at a two band combination of wavelengths. The second part of the study used the measured hyperspectral data as targets for a combination of atmospheric models developed using the MODerate resolution atmospheric TRANsmission (MODTRAN) algorithm at a variety of currently valid sUAS altitudes of operation. This study evaluated whether altitude will affect the ability to detect methane, along with determining which wavelength combination is best for use on a sUAS. The final assessment of an optimal application was made in regards to accuracy of methane detection within the MODTRAN data, as well as the cost analysis for industries who want to implement sUAS methane detection

    Advancing Climate Change Research and Hydrocarbon Leak Detection : by Combining Dissolved Carbon Dioxide and Methane Measurements with ADCP Data

    Get PDF
    With the emergence of largescale, comprehensive environmental monitoring projects, there is an increased need to combine state-of-the art technologies to address complicated problems such as ocean acidifi cation and hydrocarbon leak detection
    corecore