1,907 research outputs found

    Mobile Augmented Reality for Learning

    Get PDF
    Specht, M. (2012, April). Augmented Reality for Learning. Technical report for workshop at eLearning congress 2012. 's Hertogenbosch, The Netherlands.Until recently, augmented reality (AR) applications were mostly available for powerful workstations and high power personal computers. The introduction of augmented reality applications to smartphones enabled new and mobile AR experiences for everyday users. Because of the increasing pervasion of smartphones, AR is set to become a ubiquitous commodity for leisure and mobile learning. With this ubiquitous availability, mobile AR allows to devise and design innovative learning scenarios in real world settings. This carries much promise for enhanced learning experiences in situated learning. In the present article, we will look at different dimensions of mobile AR and exemplify their potential for education. At the end, we want to report on a short experiment that we conducted, called Locatory. It exceeds the current state of art for common mobile AR applications by introducing interactive and collaborative elements as well as gaming mechanisms

    Varying Feedback Strategy and Scheduling in Simulator Training: Effects on Learner Perceptions, Initial Learning, and Transfer

    Get PDF
    This experimental study investigated the effects of visual feedback on initial learning, perceived self-efficacy, workload, near transfer, far transfer, and perceived realism during a simulator-based training task. Prior studies indicate that providing feedback is critical for schema development (Salmoni, Schmidt, & Walter 1984; Sterman, 1994). However, its influence has been shown to dissipate and is not directly proportionate to the frequency at which it is given (Wulf, Shea, & Matschiner, 1998). A total of 54 participants completed the study forming six treatment groups. The independent treatment, visual feedback, was manipulated as scheduling (absolute—every practice trial or relative—every third trial) and strategies (gradual decrease of visual cues within the interface, gradual increase of visual cues within the interface, or a single consistent cue for each trial). Participants completed twelve practice trials of welding under one of six feedback manipulations; then, participants completed twelve practice trials of welding without it. Lastly, participants performed the weld task on actual equipment in a shop area. No treatment showed significant difference among groups with regard to initial learning, retention, near transfer, and far transfer measures. However, a statistical significance was found during initial learning and retention within each treatment group. Findings support empirical evidence that a variability of practice paradigm promotes learning (Lee & Carnahan, 1990; Shea & Morgan, 1979). Learner perceptions of realism suggest that novice learners perceive simulator fidelity as high, however, these perceptions may dissipate as the learner practices. Those groups that involved the greatest number of cues at the onset of practice or having cues available at every other trial reported the greatest amount of workload. All groups reported increases in perceptions of self-efficacy during practice on the simulator, but those perceptions decreased when participants performed the weld task on actual equipment. Findings suggest that contextual-interference of increasing, decreasing, or changing feedback counteracts the guidance effect of feedback as found in previous studies

    Dimensions of Mobile Augmented Reality for Learning: A First Inventory

    Get PDF
    Specht, M., Ternier, S., & Greller, W. (2011). Dimensions of Mobile Augmented Reality for Learning: A First Inventory. Journal of the Research for Educational Technology (RCET), 7(1), 117-127. Spring 2011.This article discusses technological developments and applications of mobile augmented reality (AR) and their application in learning. Augmented reality interaction design patterns are introduced and educational patterns for supporting certain learning objectives with AR approaches are discussed. The article then identifies several dimensions of a user context identified with sensors contained in mobile devices and used for the contextualization of learning experiences. Finally, an AR game concept, “Locatory”, is presented that combines a game logic with collaborative game play and personalized mobile augmented reality visualization

    A Simulation-Based Teaching Strategy to Achieve Competence in Learners

    Get PDF
    Background: Simulation-based education has become the mainstay of clinical education in health sciences and medical education. A simulation-based education is a result of work hour restriction placed on graduate learners, increased number of students requiring clinical experience, decreased number of clinical sites and lack of the availability to perform certain procedures by learners. Research has demonstrated that integration of a simulation-based educational teaching strategy in a curriculum and throughout continued learning achieves competence in learners. Methods: The review of the literature highlighted the following topics: (a) history of medical simulation, (b) fidelity used in simulation training, devices and equipment, (c) learning theories associated with simulation-based education, (d) role of simulation training in medical and health sciences education, e) advantages and disadvantages of simulation training, f) competence in simulation-based education, g) debriefing/reflection in simulation. Results: An extensive review of the literature supports the use of a simulation-based teaching strategy in health sciences and medical education. Learning theories associated with simulation-based education allow educators to provide teaching strategies that align with learner’s ability to achieve competence in learning clinical and procedural skills required for their profession. Conclusion: A simulation-based education integrated in all stages of learner education that provides deliberate/repetitive practice and feedback achieves competence in learners throughout a life-time of learning

    Human factors in instructional augmented reality for intravehicular spaceflight activities and How gravity influences the setup of interfaces operated by direct object selection

    Get PDF
    In human spaceflight, advanced user interfaces are becoming an interesting mean to facilitate human-machine interaction, enhancing and guaranteeing the sequences of intravehicular space operations. The efforts made to ease such operations have shown strong interests in novel human-computer interaction like Augmented Reality (AR). The work presented in this thesis is directed towards a user-driven design for AR-assisted space operations, iteratively solving issues arisen from the problem space, which also includes the consideration of the effect of altered gravity on handling such interfaces.Auch in der bemannten Raumfahrt steigt das Interesse an neuartigen Benutzerschnittstellen, um nicht nur die Mensch-Maschine-Interaktion effektiver zu gestalten, sondern auch um einen korrekten Arbeitsablauf sicherzustellen. In der Vergangenheit wurden wiederholt Anstrengungen unternommen, Innenbordarbeiten mit Hilfe von Augmented Reality (AR) zu erleichtern. Diese Arbeit konzentriert sich auf einen nutzerorientierten AR-Ansatz, welcher zum Ziel hat, die Probleme schrittweise in einem iterativen Designprozess zu lösen. Dies erfordert auch die Berücksichtigung veränderter Schwerkraftbedingungen

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform

    Proceedings of the Second International Workshop on Physicality, Physicality 2007

    Get PDF
    • …
    corecore