91,565 research outputs found

    A Modeling and Analysis Framework To Support Monitoring, Assessment, and Control of Manufacturing Systems Using Hybrid Models

    Full text link
    The manufacturing industry has constantly been challenged to improve productivity, adapt to continuous changes in demand, and reduce cost. The need for a competitive advantage has motivated research for new modeling and control strategies able to support reconfiguration considering the coupling between different aspects of plant floor operations. However, models of manufacturing systems usually capture the process flow and machine capabilities while neglecting the machine dynamics. The disjoint analysis of system-level interactions and machine-level dynamics limits the effectiveness of performance assessment and control strategies. This dissertation addresses the enhancement of productivity and adaptability of manufacturing systems by monitoring and controlling both the behavior of independent machines and their interactions. A novel control framework is introduced to support performance monitoring and decision making using real-time simulation, anomaly detection, and multi-objective optimization. The intellectual merit of this dissertation lies in (1) the development a mathematical framework to create hybrid models of both machines and systems capable of running in real-time, (2) the algorithms to improve anomaly detection and diagnosis using context-sensitive adaptive threshold limits combined with context-specific classification models, and (3) the construction of a simulation-based optimization strategy to support decision making considering the inherent trade-offs between productivity, quality, reliability, and energy usage. The result is a framework that transforms the state-of-the-art of manufacturing by enabling real-time performance monitoring, assessment, and control of plant floor operations. The control strategy aims to improve the productivity and sustainability of manufacturing systems using multi-objective optimization. The outcomes of this dissertation were implemented in an experimental testbed. Results demonstrate the potential to support maintenance actions, productivity analysis, and decision making in manufacturing systems. Furthermore, the proposed framework lays the foundation for a seamless integration of real systems and virtual models. The broader impact of this dissertation is the advancement of manufacturing science that is crucial to support economic growth. The implementation of the framework proposed in this dissertation can result in higher productivity, lower downtime, and energy savings. Although the project focuses on discrete manufacturing with a flow shop configuration, the control framework, modeling strategy, and optimization approach can be translated to job shop configurations or batch processes. Moreover, the algorithms and infrastructure implemented in the testbed at the University of Michigan can be integrated into automation and control products for wide availability.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147657/1/migsae_1.pd

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    • …
    corecore