238 research outputs found

    Actas da 10ÂŞ ConferĂŞncia sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Resource Management and Backhaul Routing in Millimeter-Wave IAB Networks Using Deep Reinforcement Learning

    Get PDF
    Thesis (PhD (Electronic Engineering))--University of Pretoria, 2023..The increased densification of wireless networks has led to the development of integrated access and backhaul (IAB) networks. In this thesis, deep reinforcement learning was applied to solve resource management and backhaul routing problems in millimeter-wave IAB networks. In the research work, a resource management solution that aims to avoid congestion for access users in an IAB network was proposed and implemented. The proposed solution applies deep reinforcement learning to learn an optimized policy that aims to achieve effective resource allocation whilst minimizing congestion and satisfying the user requirements. In addition, a deep reinforcement learning-based backhaul adaptation strategy that leverages a recursive discrete choice model was implemented in simulation. Simulation results where the proposed algorithms were compared with two baseline methods showed that the proposed scheme provides better throughput and delay performance.Sentech Chair in Broadband Wireless Multimedia Communications.Electrical, Electronic and Computer EngineeringPhD (Electronic Engineering)Unrestricte

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Energy Efficient Protocols for Delay Tolerant Networks

    Get PDF
    The delay tolerant networks (DTNs) is characterized by frequent disconnections and long delays of links among devices due to mobility, sparse deployment of devices, attacks, and noise, etc. Considerable research efforts have been devoted recently to DTNs enabling communications between network entities with intermittent connectivity. Unfortunately, mobile devices have limited energy capacity, and the fundamental problem is that traditional power-saving mechanisms are designed assuming well connected networks. Due to much larger inter-contact durations than contact durations, devices spend most of their life time in the neighbor discovery, and centralized power-saving strategies are difficult. Consequently, mobile devices consume a significant amount of energy in the neighbor discovery, rather than in infrequent data transfers. Therefore, distributed energy efficient neighbor discovery protocols for DTNs are essential to minimize the degradation of network connectivity and maximize the benefits from mobility. In this thesis, we develop sleep scheduling protocols in the medium access control (MAC) layer that are adaptive and distributed under different clock synchronization conditions: synchronous, asynchronous, and semi-asynchronous. In addition, we propose a distributed clock synchronization protocol to mitigate the clock synchronization problem in DTNs. Our research accomplishments are briefly outlined as follows: Firstly, we design an adaptive exponential beacon (AEB) protocol. By exploiting the trend of contact availability, beacon periods are independently adjusted by each device and optimized using the distribution of contact durations. The AEB protocol significantly reduces energy consumption while maintaining comparable packet delivery delay and delivery ratio. Secondly, we design two asynchronous clock based sleep scheduling (ACDS) protocols. Based on the fact that global clock synchronization is difficult to achieve in general, predetermined patterns of sleep schedules are constructed using hierarchical arrangements of cyclic difference sets such that devices independently selecting different duty cycle lengths are still guaranteed to have overlapping awake intervals with other devices within the communication range. Thirdly, we design a distributed semi-asynchronous sleep scheduling (DSA) protocol. Although the synchronization error is unavoidable, some level of clock accuracy may be possible for many practical scenarios. The sleep schedules are constructed to guarantee contacts among devices having loosely synchronized clocks, and parameters are optimized using the distribution of synchronization error. We also define conditions for which the proposed semi-asynchronous protocol outperforms existing asynchronous sleep scheduling protocols. Lastly, we design a distributed clock synchronization (DCS) protocol. The proposed protocol considers asynchronous and long delayed connections when exchanging relative clock information among nodes. As a result, smaller synchronization error achieved by the proposed protocol allows more accurate timing information and renders neighbor discovery more energy efficient. The designed protocols improve the lifetime of mobile devices in DTNs by means of energy efficient neighbor discoveries that reduce the energy waste caused by idle listening problems

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios
    • …
    corecore