10 research outputs found

    Improving application responsiveness with the BFQ disk I/O scheduler

    Get PDF
    BFQ (Budget Fair Queueing) is a production-quality, proportional-share disk scheduler with a relatively large user base. Part of its success is due to a set of simple heuristics that we added to the original algorithm about one year ago. These heuristics are the main focus of this paper. The first heuristic enriches BFQ with one of the most desirable properties for a desktop or handheld system: responsiveness. The remaining heuristics improve the robustness of BFQ across heterogeneous devices, and help BFQ to preserve a high throughput under demanding workloads. To measure the performance of these heuristics we have implemented a suite of micro and macro benchmarks mimicking several real-world tasks, and have run it on three different systems with a single rotational disk. We have also compared our results against Completely Fair Queueing (CFQ), the default Linux disk scheduler

    Efficient and predictable high-speed storage access for real-time embedded systems

    Get PDF
    As the speed, size, reliability and power efficiency of non-volatile storage media increases, and the data demands of many application domains grow, operating systems are being put under escalating pressure to provide high-speed access to storage. Traditional models of storage access assume devices to be slow, expecting plenty of slack time in which to process data between requests being serviced, and that all significant variations in timing will be down to the storage device itself. Modern high-speed storage devices break this assumption, causing storage applications to become processor-bound, rather than I/O-bound, in an increasing number of situations. This is especially an issue in real-time embedded systems, where limited processing resources and strict timing and predictability requirements amplify any issues caused by the complexity of the software storage stack. This thesis explores the issues related to accessing high-speed storage from real-time embedded systems, providing a thorough analysis of storage operations based on metrics relevant to the area. From this analysis, a number of alternative storage architectures are proposed and explored, showing that a simpler, more direct path from applications to storage can have a positive impact on efficiency and predictability in such systems

    High Throughput Disk Scheduling with Fair Bandwidth Distribution

    Full text link

    Research into software executives for space operations support

    Get PDF
    Research concepts pertaining to a software (workstation) executive which will support a distributed processing command and control system characterized by high-performance graphics workstations used as computing nodes are presented. Although a workstation-based distributed processing environment offers many advantages, it also introduces a number of new concerns. In order to solve these problems, allow the environment to function as an integrated system, and present a functional development environment to application programmers, it is necessary to develop an additional layer of software. This 'executive' software integrates the system, provides real-time capabilities, and provides the tools necessary to support the application requirements

    Strategic and operational services for workload management in the cloud

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts' resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework

    Strategic and operational services for workload management in the cloud (PhD thesis)

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts’ resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework. (Major Advisor: Azer Bestavros

    Conditions d’ordonnançabilité pour un langage dirigé par le temps

    Get PDF
    The goal of this research is to define a time-triggered language for modeling real-time systems and to provide the conditions for their schedulability under Earliest Deadline First (EDF). Time-triggered languages separate the functional part of applications from their timing definition. These languages permit to model the real-time system temporal behavior by assigning system activities to particular time instants. We propose a new time-triggered framework, Extended Timing Definition Language (E-TDL), that enhances the basic task model used in Giotto and TDL while keeping compositional and modular structure brought by the latter. An E-TDL task is characterized by: an offset, a worst case execution time, a Logical Execution Time (a time interval between task release and its termination) and a period.The schedulability analysis of the system based on this new task model should be, in particular for EDF, investigated. We develop, on the concept of the processor demand criterion, conditions for the feasibility of an E-TDL system running on a single CPU under EDF. A necessary and sufficient condition is obtained by considering the global schedules that are made up of execution traces occurring at the same time in distinct modules that are able to switch their modes at predefined instants. We estimate a maximal length of the interval on which the schedulability condition must be checked. A tool suite performing the schedulability analysis of the E-TDL systems is developed.Les travaux réalisés dans le cadre de cette thèse ont pour objectif de proposer un langage de description temporelle pour des systèmes temps-réel et d’établir les conditions de leur ordonnançabilité sous l’algorithme Earliest Deadline First (EDF). Les langages de description temporelle permettent de spécifier le comportement temporel d’une application indépendamment de son comportement fonctionnel. Le programmeur déclare dans ces langages à quels instants précis doivent être déclenchées et terminées les activités du système. Cette gestion du temps, précise et explicite, apporte au système son caractère déterministe. Le langage proposé, Extended Timing Definition Language (E-TDL), étend des langages dirigés par le temps existants, en particulier Giotto et TDL, en introduisant un nouveau modèle de tâche donné par quatre paramètres : phase, pire temps d’exécution, temps d’exécution logique TEL (intervalle de temps séparant le lancement de la tâche et sa terminaison) et période.L’introduction de ce nouveau modèle de tâche nécessite de revisiter en particulier le problème de l’ordonnançabilité des tâches pour EDF. Cette thèse propose et développe une analyse basée sur la fonction de demande pour des ensembles de tâches décrites en E-TDL et s’exécutant en contexte monoprocesseur. Une condition nécessaire et suffisante est obtenue au travers d’une analyse précise des intervalles séparant les activations de tâches au sein de différents modules s’exécutant indépendamment et pouvant changer de mode à des instants prédéfinis. Une borne de la longueur des intervalles sur lesquels doit s’opérer la vérification est déterminée. Un outil mettant en œuvre cette analyse a été développé

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe
    corecore