683 research outputs found

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Reinforced Imitative Graph Learning for Mobile User Profiling

    Get PDF
    Mobile user profiling refers to the efforts of extracting users’ characteristics from mobile activities. In order to capture the dynamic varying of user characteristics for generating effective user profiling, we propose an imitation-based mobile user profiling framework. Considering the objective of teaching an autonomous agent to imitate user mobility based on the user’s profile, the user profile is the most accurate when the agent can perfectly mimic the user behavior patterns. The profiling framework is formulated into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of the environment is a fused representation of a user and spatial entities. An event in which a user visits a POI will construct a new state, which helps the agent predict users’ mobility more accurately. In the framework, we introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected spatial entities. Additionally, we develop a mutual-updating strategy to quantify the state that evolves over time. Along these lines, we develop a reinforcement imitative graph learning framework for mobile user profiling. Finally, we conduct extensive experiments to demonstrate the superiority of our approach
    • …
    corecore