1,819 research outputs found

    Video vehicle detection at signalised junctions: a simulation-based study

    Get PDF
    Many existing advanced methods of traffic signal control depend on information about approaching traffic provided by inductive loop detectors at particular points in the road. But analysis of images from CCTV cameras can in principle provide more comprehensive information about traffic approaching and passing through junctions, and cameras may be easier to install and maintain than loop detectors, and some systems based on video detection have already been in use for some time. Against this background, computer simulation has been used to explore the potential of existing and immediately foreseeable capability in automatic on-line image analysis to extract information relevant to signal control from images provided by cameras mounted in acceptable positions at signal-controlled junctions. Some consequences of extracting relevant information in different ways were investigated in the context of an existing detailed simulation model of vehicular traffic moving through junctions under traffic-responsive signal control, and the development of one basic and one advanced algorithm for traffic-responsive control. The work was confined as a first step to operation of one very simple signalcontrolled junction. Two techniques for extraction of information from images were modelled - a more ambitious technique based on distinguishing most of the individual vehicles visible to the camera, and a more modest technique requiring only that the presence of vehicles in any part of the image be distinguished from the background scene. In the latter case, statistical modelling was used to estimate the number of vehicles corresponding to any single area of the image that represents vehicles rather than background. At the simple modelled junction, each technique of extraction enabled each of the algorithms for traffic-responsive control of the signals to achieve average delays per vehicle appreciably lower than those given by System D control, and possibly competitive with those that MOVA would give, but comparison with MOVA was beyond the scope of the initial study. These results of simulation indicate that image analysis of CCTV pictures should be able to provide sufficient information in practice for traffic-responsive control that is competitive with existing techniques. Ways in which the work could be taken further were discussed with practitioners, but have not yet been progressed

    Spatial inference of traffic transition using micro-macro traffic variables

    Get PDF
    This paper proposes an online traffic inference algorithm for road segments in which local traffic information cannot be directly observed. Using macro-micro traffic variables as inputs, the algorithm consists of three main operations. First, it uses interarrival time (time headway) statistics from upstream and downstream locations to spatially infer traffic transitions at an unsupervised piece of segment. Second, it estimates lane-level flow and occupancy at the same unsupervised target site. Third, it estimates individual lane-level shockwave propagation times on the segment. Using real-world closed-circuit television data, it is shown that the proposed algorithm outperforms previously proposed methods in the literature

    Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The safety, mobility, environmental and economic benefits of Connected and Autonomous Vehicles (CAVs) are potentially dramatic. However, realization of these benefits largely hinges on the timely upgrading of the existing transportation system. CAVs must be enabled to send and receive data to and from other vehicles and drivers (V2V communication) and to and from infrastructure (V2I communication). Further, infrastructure and the transportation agencies that manage it must be able to collect, process, distribute and archive these data quickly, reliably, and securely. This paper focuses on current digital roadway infrastructure initiatives and highlights the importance of including digital infrastructure investment alongside more traditional infrastructure investment to keep up with the auto industry's push towards this real time communication and data processing capability. Agencies responsible for transportation infrastructure construction and management must collaborate, establishing national and international platforms to guide the planning, deployment and management of digital infrastructure in their jurisdictions. This will help create standardized interoperable national and international systems so that CAV technology is not deployed in a haphazard and uncoordinated manner

    Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools

    Full text link
    Big data has been used widely in many areas including the transportation industry. Using various data sources, traffic states can be well estimated and further predicted for improving the overall operation efficiency. Combined with this trend, this study presents an up-to-date survey of open data and big data tools used for traffic estimation and prediction. Different data types are categorized and the off-the-shelf tools are introduced. To further promote the use of big data for traffic estimation and prediction tasks, challenges and future directions are given for future studies

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System

    The use of real-time connected vehicles and HERE data in developing an automated freeway incident detection algorithm

    Get PDF
    Traffic incidents cause severe problems on roadways. About 6.3 million highway crashes are reported annually only in the United States, among which more than 32,000 are fatal crashes. Reducing the risk of traffic incidents is key to effective traffic incident management (TIM). Quick detection of unexpected traffic incidents on roadways contribute to quick clearance and hence improve safety. Existing techniques for the detection of freeway incidents are not reliable. This study focuses on exploring the potential of emerging connected vehicles (CV) technology in automated freeway incident detection in the mixed traffic environment. The study aims at developing an automated freeway incident detection algorithm that will take advantage of the CV technology in providing fast and reliable incident detection. Lee Roy Selmon Expressway was chosen for this study because of the THEA CV data availability. The findings of the study show that emerging CV technology generates data that are useful for automated freeway incident detection, although the market penetration rate was low (6.46%). The algorithm performance in terms of detection rate (DR) and false alarm rate (FAR) indicated that CV data resulted into 31.71% DR and zero FAR while HERE yielded a 70.95% DR and 9.02% FAR. Based on Pearson’s correlation analysis, the incidents detected by the CV data were found to be similar to the ones detected by the HERE data. The statistical comparison by ANOVA shows that there is a difference in the algorithm’s detection time when using CV data and HERE data. 17.07% of all incidents were detected quicker when using CV data compared to HERE data, while 7.32% were detected quicker when using HERE data compared to CV data

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Artificial intelligence enabled automatic traffic monitoring system

    Get PDF
    The rapid advancement in the field of machine learning and high-performance computing have highly augmented the scope of video-based traffic monitoring systems. In this study, an automatic traffic monitoring system is proposed that deploys several state-of-the-art deep learning algorithms based on the nature of traffic operation. Taking advantage of a large database of annotated video surveillance data, deep learning-based models are trained to track congestion, detect traffic anomalies and tabulate vehicle counts. To monitor traffic queues, this study implements a Mask region-based convolutional neural network (Mask R-CNN) that predicts congestion using pixel-level segmentation masks on classified regions of interest. Similarly, the model was used to accurately extract traffic queue-related information from infrastructure mounted video cameras. The use of infrastructure-mounted CCTV cameras for traffic anomaly detection and verification is further explored. Initially, a convolutional neural network model based on you only look once (YOLO), a popular deep learning framework for object detection and classification is deployed. The following identification model, together with a multi-object tracking system (based on intersection over union -- IOU) is used to search for and scrutinize various traffic scenes for possible anomalies. Likewise, several experiments were conducted to fine-tune the system's robustness in different environmental and traffic conditions. Some of the techniques such as bounding box suppression and adaptive thresholding were used to reduce false alarm rates and refine the robustness of the methodology developed. At each stage of our developments, a comparative analysis is conducted to evaluate the strengths and limitations of the proposed approach. Likewise, IOU tracker coupled with YOLO was used to automatically count the number of vehicles whose accuracy was later compared with a manual counting technique from CCTV video feeds. Overall, the proposed system is evaluated based on F1 and S3 performance metrics. The outcome of this study could be seamlessly integrated into traffic system such as smart traffic surveillance system, traffic volume estimation system, smart work zone management systems, etc.by Vishal MandalIncludes bibliographical reference
    • …
    corecore