6,476 research outputs found

    Estimating Plasma Glucose from Interstitial Glucose: The Issue of Calibration Algorithms in Commercial Continuous Glucose Monitoring Devices

    Get PDF
    Evaluation of metabolic control of diabetic people has been classically performed measuring glucose concentrations in blood samples. Due to the potential improvement it offers in diabetes care, continuous glucose monitoring (CGM) in the subcutaneous tissue is gaining popularity among both patients and physicians. However, devices for CGM measure glucose concentration in compartments other than blood, usually the interstitial space. This means that CGM need calibration against blood glucose values, and the accuracy of the estimation of blood glucose will also depend on the calibration algorithm. The complexity of the relationship between glucose dynamics in blood and the interstitial space, contrasts with the simplistic approach of calibration algorithms currently implemented in commercial CGM devices, translating in suboptimal accuracy. The present review will analyze the issue of calibration algorithms for CGM, focusing exclusively on the commercially available glucose sensors

    Methods for the treatment of uncertainty in dynamical systems: Application to diabetes

    Full text link
    [EN] Patients suffering from Type 1 Diabetes are not able to secrete insulin, thus, they have to get it administered externally. Current research is focused on developing an artificial pancreas, a control system that automatically administers insulin according to patient's needs. The work presented here aims to improve the efficiency and safety of control algorithms for artificial pancreas. Glucose-insulin models try to mimic the administration of external insulin, the absorption of carbohydrates, and the influence of both of them in blood glucose concentration. However, these processes are infinitely complex and they are characterized by their high variability. The mathematical models used are often a simplified version which does not include all the process variability and, therefore, they do not always match reality. This deficiency on the models can be addressed by considering uncertainty on their parameters and initial conditions. In this way, the exact values are unknown but they can be bounded by intervals that comprehend all the variability of the considered process. When the value of the parameters and initial conditions is known, there is usually just one possible behaviour. However, if they are bounded by intervals, a set of possible solutions exists. In this case, it is interesting to compute a solution envelope that guarantees the inclusion of all the possible behaviours. A common technique to compute this envelope is the monotonicity analysis of the system. Nevertheless, some overestimation is produced if the system is not fully monotone. In this thesis, several methods and approaches have been developed to reduce, or even eliminate, the overestimation in the computation of solution envelopes, while satisfying the inclusion guarantee. Another problem found during the use of an artificial pancreas is that only the subcutaneous glucose concentration can be measured in real time, with some noise in the measurements. The rest of the system states are unknown, but they could be estimated from this set of noisy measurements by state observers, like Kalman filters. A detailed example is shown at the end of this thesis, where an Extended Kalman Filter is used to estimate in real time insulin concentration based on the food ingested and in periodical measurements of subcutaneous glucose.[ES] Los pacientes que sufren de diabetes tipo 1 no son capaces de secretar insulina, por lo que tienen que administrársela externamente. La investigación actual se centra en el desarrollo de un páncreas artificial, un sistema de control que administre automáticamente la insulina en función de las necesidades del paciente. El trabajo que aquí se presenta tiene como objetivo mejorar la eficiencia y la seguridad de los algoritmos de control para el páncreas artificial. Los modelos de glucosa-insulina tratan de emular la administración externa de la insulina, la absorción de carbohidratos y la influencia de ambos en la concentración de glucosa en sangre. El problema es que estos procesos son infinitamente complejos y se caracterizan por su alta variabilidad. Los modelos matemáticos utilizados suelen ser una versión simplificada que no incluye toda la variabilidad del proceso y, por lo tanto, no coinciden con la realidad. Esta deficiencia de los modelos puede subsanarse considerando inciertos sus parámetros y las condiciones iniciales, de manera que se desconoce su valor exacto pero sí podemos englobarlos en ciertos intervalos que comprendan toda la variabilidad del proceso considerado. Cuando los valores de los parámetros y de las condiciones iniciales son conocidos, existe, por lo general, un único comportamiento posible. Sin embargo, si están delimitados por intervalos se obtiene un conjunto de posibles soluciones. En este caso, interesa obtener una envoltura de las soluciones que garantice la inclusión de todos los comportamientos posibles. Una técnica habitual que facilita el cómputo de esta envoltura es el análisis de la monotonicidad del sistema. Sin embargo, si el sistema no es totalmente monótono la envoltura obtenida estará sobrestimada. En esta tesis se han desarrollado varios métodos para reducir, o incluso eliminar, la sobrestimación en el cálculo de envolturas, al tiempo que se satisface la garantía de inclusión. Otro inconveniente con el que nos encontramos durante el uso de un páncreas artificial es que solo es posible medir en tiempo real, con cierto ruido en la medida, la glucosa subcutánea. El resto de los estados del sistema son desconocidos, pero podrían ser estimados a partir de este conjunto limitado de mediciones con ruido utilizando observadores de estado, como el Filtro de Kalman. Un ejemplo detallado se muestra al final de la tesis, donde se estima en tiempo real la concentración de insulina en plasma en función de la comida ingerida y de mediciones periódicas de la glucosa subcutánea con ayuda de un Filtro de Kalman Extendido.[CA] Els pacients que pateixen de diabetis tipus 1 no són capaços de secretar insulina, motiu pel qual han d'administrar-se-la externament. La investigació actual es centra en el desenvolupament d'un pàncrees artificial, un sistema de control que administre automàticament la insulina en funció de les necessitats del pacient. El treball que ací es presenta té com a objectiu millorar l'eficiència i la seguretat dels algorismes de control per al pàncrees artificial. Els models de glucosa-insulina tracten d'emular l'administració externa de la insulina, l'absorció de carbohidrats i la influència d'ambdós factors en la concentració de glucosa en sang. El problema és que estos processos són infinitament complexos i es caracteritzen per la seua alta variabilitat. Els models matemàtics emprats solen ser una versió simplificada que no inclou tota la variabilitat del procés i, per tant, no coincideixen amb la realitat. Esta deficiència dels models pot esmenar-se considerant incerts els seus paràmetres i les condicions inicials, de manera que es desconeix el seu valor exacte però sí podem englobar-los en certs intervals que comprenguen tota la variabilitat del procés considerat. Quan els valors dels paràmetres i de les condicions inicials són coneguts, existeix, en general, un únic comportament possible. No obstant, si estan delimitats per intervals s'obté un conjunt de possibles solucions. En este cas, interessa obtindre un embolcall de les solucions que assegure la inclusió de tots els comportaments possibles. Una tècnica habitual que facilita el còmput d'este embolcall és l'anàlisi de la monotonicitat del sistema. No obstant, si el sistema no és totalment monòton l'embolcall obtingut estarà sobreestimat. En esta tesi s'han desenvolupat diversos mètodes per a reduir, o fins i tot eliminar, la sobreestimació en el càlcul dels embolcalls, al temps que se satisfà la garantia d'inclusió. Altre inconvenient amb què ens trobem durant l'ús d'un pàncrees artificial és que només és possible mesurar en temps real, amb cert soroll en la mesura, la glucosa subcutània. La resta dels estats del sistema són desconeguts, però podrien ser estimats a partir d'este conjunt limitat de mesures amb soroll utilitzant observadors d'estat, com el Filtre de Kalman. Un exemple detallat es mostra al final de la tesi, on s'estima en temps real la concentració d'insulina en plasma en funció del menjar ingerit i de les mesures periòdiques de la glucosa subcutània amb ajuda d'un Filtre de Kalman Estés.Pereda Sebastián, DD. (2015). Methods for the treatment of uncertainty in dynamical systems: Application to diabetes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54121TESI

    Estimation of insulin sensitivity from continuous glucose monitoring and insulin pump data in type 1 diabetes

    Get PDF
    Diabetes mellitus is a disease characterized by chronic hyperglycemia either due to a lack of secretion of the hormone insulin (Type 1 Diabetes Mellitus, T1DM) or due to impaired action of this hormone (Type 2 Diabetes Mellitus, T2DM). Due to its short- and long-term complications, it is currently one of the major health problems of the economically developed countries and at the same time, one of the first items of healthcare spending. Diabetic patients therefore need regular blood glucose monitoring associated with adequate insulin therapy whose goal is to keep glucose concentration within the normal safe range (70 180 mg/dl), trying to limit excursions in hypoglycemic (20 70 mg/dl), due to short-term complications, and hyperglycemic range (180 600 mg/dl), due to long-term complications. In order to optimize insulin therapy, and then assess the correct amount of insulin to be administered to the patient, it is necessary to know its insulin sensitivity (SI), i.e. the ability of insulin to stimulate glucose utilization and inhibit its production, specific for each individual and changing during the day. The aim of this thesis is to estimate an index of insulin sensitivity in patients with type 1diabetes by using a recently proposed technique which exploits minimally invasive technologies used by diabetic patients for control therapy. This parameter will be estimated in correspondence of meals over the whole day and, in order to be able to estimate the index of insulin sensitivity even in the presence of meals close, a tool for the estimation of carbohydrates absorbed during the meal (Carbohydrates On Board, COB) will be proposed. In Chapter 1 the glucose-insulin regulatory system, diabetes and its complications, conventional therapy for its control and indices of insulin sensitivity in literature are introduced. In Chapter 2 the experimental protocols applied to the patients and the data available data are presented. In Chapter 3 the recently proposed method for the estimation of SI using minimally invasive technologies and the COB function for the estimation of carbohydrates absorbed during the meal are presented. In Chapter 4 the estimates of insulin sensitivity in different datasets with and without the COB function, which in turn was developed using simulated and real data, are presente

    A Survey of Insulin-Dependent Diabetes—Part II: Control Methods

    Get PDF
    We survey blood glucose control schemes for insulin-dependent diabetes therapies and systems. These schemes largely rely on mathematical models of the insulin-glucose relations, and these models are typically derived in an empirical or fundamental way. In an empirical way, the experimental insulin inputs and resulting blood-glucose outputs are used to generate a mathematical model, which includes a couple of equations approximating a very complex system. On the other hand, the insulin-glucose relation is also explained from the well-known facts of other biological mechanisms. Since these mechanisms are more or less related with each other, a mathematical model of the insulin-glucose system can be derived from these surrounding relations. This kind of method of the mathematical model derivation is called a fundamental method. Along with several mathematical models, researchers develop autonomous systems whether they involve medical devices or not to compensate metabolic disorders and these autonomous systems employ their own control methods. Basically, in insulin-dependent diabetes therapies, control methods are classified into three categories: open-loop, closed-loop, and partially closed-loop controls. The main difference among these methods is how much the systems are open to the outside people

    Model Identification from Ambulatory Data for Post-Prandial Glucose Control in type 1 Diabetes

    Full text link
    Several glucoregulatory models are studies and a new model is proposed. Experiments are developed following an optimal design methodology. The designed experiments are applied in home monitoring of diabetic patients.Laguna Sanz, AJ. (2010). Model Identification from Ambulatory Data for Post-Prandial Glucose Control in type 1 Diabetes. http://hdl.handle.net/10251/14052Archivo delegad

    Contributions to modelling and control for improved hypoglycaemia and variability mitigation by dual-hormone artificial pancreas systems

    Full text link
    [ES] Las personas con diabetes tipo 1 carecen de la capacidad de secretar insulina y, por lo tanto, necesitan regular su glucosa en sangre con la administración de insulina exógena. El páncreas artificial se presenta como la solución tecnológica ideal para alcanzar los objetivos terapéuticos de la normoglucemia, liberando al paciente de la carga actual de autocontrol y manejo. Sin embargo, el riesgo de hipoglucemia y la variabilidad glucémica siguen siendo factores limitantes en los algoritmos de control actuales integrados en el páncreas artificial. El propósito de la presente tesis es profundizar en el conocimiento de la hipoglucemia y avanzar los algoritmos de control del páncreas artificial para minimizar la incidencia de hipoglucemia y reducir la variabilidad glucémica. Después de proporcionar una visión general del estado del arte del control de la glucosa y el páncreas artificial, esta tesis aborda temas relacionados con el modelado y el control, con las siguientes contribuciones: Se presenta una extensión del modelo de Bergman Minimal que tiene en cuenta la respuesta contrarreguladora a la hipoglucemia. Este modelo explica la relación entre los diversos cambios fisiológicos producidos durante la hipoglucemia, con la adrenalina y los ácidos grasos libres como actores principales. Como resultado, se obtiene una mejor comprensión de la hipoglucemia, lo que permite explicar una auto-potenciación paradójica de la hipoglucemia como se modela a través de enfoques funcionales en el ampliamente utilizado simulador de diabetes tipo 1 UVA-Padova, que se utilizará en esta tesis para la validación in silico de los controladores desarrollados. Se realiza una evaluación de las métricas de variabilidad de la glucosa y los índices de calidad de control. La evaluación de la variabilidad glucémica en el desempeño de los controladores es necesaria; pero todavía no hay un conjunto de métricas de variabilidad glucémica que sea considerado como el "gold estándar". Por tanto, se lleva a cabo un análisis de las métricas de variabilidad disponibles en la literatura para definir un conjunto de indicadores recomendables. Debido a las limitaciones de los sistemas de páncreas artificiales unihormonales para mitigar la hipoglucemia en escenarios difíciles como el ejercicio, esta tesis se centra en el desarrollo de nuevos algoritmos de control bihormonales, con infusión simultanea de insulina y glucagón. Se propone un controlador coordinado bihormonal con estructuras de control paralelas como un algoritmo de control factible para la mitigación de la hipoglucemia y la reducción de la variabilidad glucémica, demostrando un rendimiento superior al de las estructuras de control utilizadas actualmente con lazos de control independientes de insulina y glucagón. Los controladores están diseñados y evaluados in silico en escenarios desafiantes y su rendimiento se evalúa principalmente con el conjunto de métricas definidas previamente como las recomendables.[CA] Les persones amb diabetis tipus 1 no tenen la capacitat de secretar insulina secreta i per tant, necessiten regular la seva glucosa en sang amb l'administració d'insulina exògena. El Pàncrees Artificial es presenta com la solució tecnològica ideal per assolir els objectius terapèutics de la normoglucèmia, alliberant al pacient de la càrrega actual d'autocontrol. No obstant, el risc d'hipoglucèmia i l'alta variabilitat glucèmica continuen sent un factor limitant en els algoritmes de control actuals integrats en el Pàncrees Artificials. El propòsit de la present tesi és aprofundir en el coneixement de la hipoglucèmia i millorar els algoritmes de control per corregir amb antelació la dosi excessiva d'insulina, minimitzant la incidència d'hipoglucèmia i reduint la variabilitat glucèmica. Després de donar una visió general de l'estat de l'art del control de la glucosa i el pàncrees artificial, aquesta tesi aborda aspectes de modelització i control, amb les següents contribucions: Es presenta una extensió del model Minimal de Bergman amb la contrarregulació. Aquest model explica la relació entre els diversos canvis siològics produïts durant la hipoglucèmia. Així, permet comprendre millor la hipoglucèmia i comparar els resultats amb els proporcionats per l'enfocament funcional del simulador de diabetis tipus 1 més utilitzat a la comunitat científica. Es realitza una avaluació de les mètriques de variabilitat glucèmica i dels índexs de qualitat de control. Es necessària l'avaluació de la variabilitat glucèmica en el rendiment dels controladors; però encara no hi ha un conjunt de mètriques considerades com les "gold standard". Per tant, es realitza una anàlisi de les mètriques de variabilitat disponibles a la literatura per definir un conjunt d'indicadors recomanables. Es proposa un controlador bi-hormonal coordinat amb estructures de control paral.leles com un algoritme de control viable per a la mitigació d'hipoglucèmia i la reducció de la variabilitat glucèmica. Els controladors estan dissenyats i avaluats in-silico en escenaris desafiadors i el seu rendiment es valora principalment amb el conjunt de mètriques definides prèviament com les mètriques recomanables.[EN] People with Type 1 Diabetes lack the ability to secrete insulin and therefore need to regulate their blood glucose with exogenous insulin delivery. The Artificial Pancreas is presented as the ideal technological solution to reach the therapeutic goals of normoglycaemia, freeing the patient from the current burden of self-control and management. Nevertheless, the risk of hypoglycaemia and the high glycaemic variability are still a limiting factors in the current control algorithms integrated in the Artificial Pancreas. The purpose of the present thesis is to delve into knowledge of hypoglycaemia and to advance in the artificial pancreas control algorithms in order to minimise hypoglycaemia incidence and reduce glycaemic variability. After providing an overview of the state of the art in the eld of glucose control and articial pancreas, this thesis addresses issues on modelling and control, with the following contributions: An extension of the Bergman Minimal model accounting for counterregulatory response to hypoglycaemia is presented. This model explains the relationship between the several physiological changes produced during hypoglycaemia, with adrenaline and free fatty acids as main players. As a result, a better understanding of hypoglycaemia is gained, allowing to explain a paradoxical auto-potentiation of hypoglycaemia as modeled through functional approaches in the widespread used UVA-Padova Type 1 Diabetes simulator, which will be used in this thesis for in silico validation of the developed controllers. An assessment of glucose variability metrics and control quality indices is carried out. The evaluation of the glycaemic variability on the controllers performance is necessary; but there is not a gold standard variability metrics yet. Therefore, an analysis of the variability metrics available in literature is conducted in order to define a recommendable set of indicators. Due to the limitations of single-hormone artificial pancreas systems in mitigating hypoglycaemia in challenging scenarios such as exercise, this thesis focuses on the developement of new dual-hormone control algorithms, with concomitant infusion of insulin and glucagon. A coordinated dual-hormone controller with parallel control structures is proposed as a feasible control algorithm for hypoglycaemia mitigation and glycaemic variability reduction, demonstrating superior performance as currently used control structures with independent insulin and glucagon control loops. The controllers are designed and evaluated in-silico under challenging scenarios and their performance are assessed mainly with the set of metrics defined previously as the recommendable ones.Moscardó García, V. (2019). Contributions to modelling and control for improved hypoglycaemia and variability mitigation by dual-hormone artificial pancreas systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/120456TESI

    Robust strategies for glucose control in type 1 diabetes

    Full text link
    [EN] Type 1 diabetes mellitus is a chronic and incurable disease that affects millions of people all around the world. Its main characteristic is the destruction (totally or partially) of the beta cells of the pancreas. These cells are in charge of producing insulin, main hormone implied in the control of blood glucose. Keeping high levels of blood glucose for a long time has negative health effects, causing different kinds of complications. For that reason patients with type 1 diabetes mellitus need to receive insulin in an exogenous way. Since 1921 when insulin was first isolated to be used in humans and first glucose monitoring techniques were developed, many advances have been done in clinical treatment with insulin. Currently 2 main research lines focused on improving the quality of life of diabetic patients are opened. The first one is concentrated on the research of stem cells to replace damaged beta cells and the second one has a more technological orientation. This second line focuses on the development of new insulin analogs to allow emulating with higher fidelity the endogenous pancreas secretion, the development of new noninvasive continuous glucose monitoring systems and insulin pumps capable of administering different insulin profiles and the use of decision-support tools and telemedicine. The most important challenge the scientific community has to overcome is the development of an artificial pancreas, that is, to develop algorithms that allow an automatic control of blood glucose. The main difficulty avoiding a tight glucose control is the high variability found in glucose metabolism. This fact is especially important during meal compensation. This variability, together with the delay in subcutaneous insulin absorption and action causes controller overcorrection that leads to late hypoglycemia (the most important acute complication of insulin treatment). The proposals of this work pay special attention to overcome these difficulties. In that way interval models are used to represent the patient physiology and to be able to take into account parametric uncertainty. This type of strategy has been used in both the open loop proposal for insulin dosage and the closed loop algorithm. Moreover the idea behind the design of this last proposal is to avoid controller overcorrection to minimize hypoglycemia while adding robustness against glucose sensor failures and over/under- estimation of meal carbohydrates. The algorithms proposed have been validated both in simulation and in clinical trials.[ES] La diabetes mellitus tipo 1 es una enfermedad crónica e incurable que afecta a millones de personas en todo el mundo. Se caracteriza por una destrucción total o parcial de las células beta del páncreas. Estas células son las encargadas de producir la insulina, hormona principal en el control de glucosa en sangre. Valores altos de glucosa en la sangre mantenidos en el tiempo afectan negativamente a la salud, provocando complicaciones de diversa índole. Es por eso que los pacientes con diabetes mellitus tipo 1 necesitan recibir insulina de forma exógena. Desde que se consiguiera en 1921 aislar la insulina para poder utilizarla en clínica humana, y se empezaran a desarrollar las primeras técnicas de monitorización de glucemia, se han producido grandes avances en el tratamiento con insulina. Actualmente, las líneas de investigación que se están siguiendo en relación a la mejora de la calidad de vida de los pacientes diabéticos, tienen fundamentalmente 2 vertientes: una primera que se centra en la investigación en células madre para la reposición de las células beta y una segunda vertiente de carácter más tecnológico. Dentro de esta segunda vertiente, están abiertas varias líneas de investigación, entre las que se encuentran el desarrollo de nuevos análogos de insulina que permitan emular más fielmente la secreción endógena del páncreas, el desarrollo de monitores continuos de glucosa no invasivos, bombas de insulina capaces de administrar distintos perfiles de insulina y la inclusión de sistemas de ayuda a la decisión y telemedicina. El mayor reto al que se enfrentan los investigadores es el de conseguir desarrollar un páncreas artificial, es decir, desarrollar algoritmos que permitan disponer de un control automático de la glucosa. La principal barrera que se encuentra para conseguir un control riguroso de la glucosa es la alta variabilidad que presenta su metabolismo. Esto es especialmente significativo durante la compensación de las comidas. Esta variabilidad junto con el retraso en la absorción y actuación de la insulina administrada de forma subcutánea favorece la aparición de hipoglucemias tardías (complicación aguda más importante del tratamiento con insulina) a consecuencia de la sobreactuación del controlador. Las propuestas presentadas en este trabajo hacen especial hincapié en sobrellevar estas dificultades. Así, se utilizan modelos intervalares para representar la fisiología del paciente, y poder tener en cuenta la incertidumbre en sus parámetros. Este tipo de estrategia se ha utilizado tanto en la propuesta de dosificación automática en lazo abierto como en el algoritmo en lazo cerrado. Además la principal idea de diseño de esta última propuesta es evitar la sobreactuación del controlador evitando hipoglucemias y añadiendo robustez ante fallos en el sensor de glucosa y en la estimación de las comidas. Los algoritmos propuestos han sido validados en simulación y en clínica.[CA] La diabetis mellitus tipus 1 és una malaltia crònica i incurable que afecta milions de persones en tot el món. Es caracteritza per una destrucció total o parcial de les cèl.lules beta del pàncrees. Aquestes cèl.lules són les encarregades de produir la insulina, hormona principal en el control de glucosa en sang. Valors alts de glucosa en la sang mantinguts en el temps afecten negativament la salut, provocant complicacions de diversa índole. És per això que els pacients amb diabetis mellitus tipus 1 necessiten rebre insulina de forma exògena. Des que s'aconseguís en 1921 aïllar la insulina per a poder utilitzar-la en clínica humana, i es començaren a desenrotllar les primeres tècniques de monitorització de glucèmia, s'han produït grans avanços en el tractament amb insulina. Actualment, les línies d'investigació que s'estan seguint en relació a la millora de la qualitat de vida dels pacients diabètics, tenen fonamentalment 2 vessants: un primer que es centra en la investigació de cèl.lules mare per a la reposició de les cèl.lules beta i un segon vessant de caràcter més tecnològic. Dins d' aquest segon vessant, estan obertes diverses línies d'investigació, entre les que es troben el desenrotllament de nous anàlegs d'insulina que permeten emular més fidelment la secreció del pàncrees, el desenrotllament de monitors continus de glucosa no invasius, bombes d'insulina capaces d'administrar distints perfils d'insulina i la inclusió de sistemes d'ajuda a la decisió i telemedicina. El major repte al què s'enfronten els investigadors és el d'aconseguir desenrotllar un pàncrees artificial, és a dir, desenrotllar algoritmes que permeten disposar d'un control automàtic de la glucosa. La principal barrera que es troba per a aconseguir un control rigorós de la glucosa és l'alta variabilitat que presenta el seu metabolisme. Açò és especialment significatiu durant la compensació dels menjars. Aquesta variabilitat junt amb el retard en l'absorció i actuació de la insulina administrada de forma subcutània afavorix l'aparició d'hipoglucèmies tardanes (complicació aguda més important del tractament amb insulina) a conseqüència de la sobreactuació del controlador. Les propostes presentades en aquest treball fan especial insistència en suportar aquestes dificultats. Així, s'utilitzen models intervalares per a representar la fisiologia del pacient, i poder tindre en compte la incertesa en els seus paràmetres. Aquest tipus d'estratègia s'ha utilitzat tant en la proposta de dosificació automàtica en llaç obert com en l' algoritme en llaç tancat. A més, la principal idea de disseny d'aquesta última proposta és evitar la sobreactuació del controlador evitant hipoglucèmies i afegint robustesa.Revert Tomás, A. (2015). Robust strategies for glucose control in type 1 diabetes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56001TESI

    Modeling and Prediction in Diabetes Physiology

    Get PDF
    Diabetes is a group of metabolic diseases characterized by the inability of the organism to autonomously regulate the blood glucose levels. It requires continuing medical care to prevent acute complications and to reduce the risk of long-term complications. Inadequate glucose control is associated with damage, dysfunction and failure of various organs. The management of the disease is non trivial and demanding. With today’s standards of current diabetes care, good glucose regulation needs constant attention and decision-making by the individuals with diabetes. Empowering the patients with a decision support system would, therefore, improve their quality of life without additional burdens nor replacing human expertise. This thesis investigates the use of data-driven techniques to the purpose of glucose metabolism modeling and short-term blood-glucose predictions in Type I Diabetes Mellitus (T1DM). The goal was to use models and predictors in an advisory tool able to produce personalized short-term blood glucose predictions and on-the-spot decision making concerning the most adequate choice of insulin delivery, meal intake and exercise, to help diabetic subjects maintaining glycemia as close to normal as possible. The approaches taken to describe the glucose metabolism were discrete-time and continuous-time models on input-output form and statespace form, while the blood glucose short-term predictors, i.e., up to 120 minutes ahead, used ARX-, ARMAX- and subspace-based prediction
    corecore