192,884 research outputs found

    Moving horizon estimation of human kinematics and muscle forces

    Full text link
    Human-robot interaction based on real-time kinematics or electromyography (EMG) feedback improves rehabilitation using assist-as-needed strategies. Muscle forces are expected to provide even more comprehensive information than EMG to control these assistive rehabilitation devices. Measuring in vivo muscle force is challenging, leading to the development of numerical methods to estimate them. Due to their high computational cost, forward dynamics-based optimization algorithms were not viable for real-time estimation until recently. To achieve muscle forces estimation in real time, a moving horizon estimator (MHE) algorithm was used to track experimental biosignals. Two participants were equipped with EMG sensors and skin markers that were streamed in real time and used as targets for the MHE. The upper-limb musculoskeletal (MSK) model was composed of 10 degrees-of-freedom actuated by 31 muscles. The MHE relies on a series of overlapping trajectory optimization subproblems of which the following parameters have been adjusted: the fixed duration and the frame to export. We based this adjustment on the estimation delay, the muscle saturation, the joint kinematic mean power frequency, and errors to experimental data. Our algorithm provided consistent estimates of muscle forces and kinematics with visual feedback at 30 Hz with a 110 ms delay. This method is promising to guide rehabilitation and enrich assistive device control laws with personalized force estimations

    HDAX: Historical symbolic modelling of delay time series in a communications network

    Full text link
    There are certain performance parameters like packet delay, delay variation (jitter) and loss, which are decision factors for online quality of service (QoS) traffic routing. Although considerable efforts have been placed on the Internet to assure QoS, the dominant TCP/IP - like the best-effort communications policy - does not provide sufficient guarantee without abrupt change in the protocols. Estimation and forecasting end-to-end delay and its variations are essential tasks in network routing management for detecting anomalies. A large amount of research has been done to provide foreknowledge of network anomalies by characterizing and forecasting delay with numerical forecasting methods. However, the methods are time consuming and not efficient for real-time application when dealing with large online datasets. Application is more difficult when the data is missing or not available during online forecasting. Moreover, the time cost in statistical methods for trivial forecasting accuracy is prohibitive. Consequently, many researchers suggest a transition from computing with numbers to the manipulation of perceptions in the form of fuzzy linguistic variables. The current work addresses the issue of defining a delay approximation model for packet switching in communications networks. In particular, we focus on decision-making for smart routing management, which is based on the knowledge provided by data mining (informed) agents. We propose a historical symbolic delay approximation model (HDAX) for delay forecasting. Preliminary experiments with the model show good accuracy in forecasting the delay time-series as well as a reduction in the time cost of the forecasting method. HDAX compares favourably with the competing Autoregressive Moving Average (ARMA) algorithm in terms of execution time and accuracy. © 2009, Australian Computer Society, Inc

    Estimation of dominant sound source with three microphone array

    Get PDF
    Several real-life applications require a system that would reliably locate and track a single speaker. This can be achieved by using visual or audio data. Processing of an incoming signal to obtain the location of a source is known as Direction of Arrival (DOA) estimation. The basic setting in audio based DOA estimation is a set of microphones situated in known locations. The signal is captured by each of the microphones, and the signals are analyzed by one of the following methods: steered beamformer based method; subspace based method; or time delay estimation based method. The aim of this thesis is to review different classes of existing methods for DOA estimation and to create an application for visualizing the dominant sound source direction around a three-microphone array in real time. In practice, the objective is to enhance an algorithm for a DOA estimation proposed by Nokia Research Center. As visualization of dominant sound source creates a basis for many audio related applications, a practical example of such applications is developed. The proposed algorithm is based on time delay estimation method and utilizes cross correlation. Several enhancements are developed to the initial algorithm to improve its performance. The proposed algorithm is evaluated by comparing it with one of the most common methods, general cross correlation with phase transform (GCC PHAT). The evaluation includes testing all algorithms on three types of signals: speech signal arriving from a stationary location, speech signal arriving from a moving source, and a transient signal. Additionally, using the proposed algorithm, a computer application with a video tracker is developed. The results show that the initially proposed algorithm does not perform as well as GCC PHAT. The enhancements improve the algorithm performance notably, although they did not bring the efficiency of the algorithm to the level of GCC PHAT when processing speech signals. In case of transient signals, the enhanced algorithm was superior to GCC PHAT. The video tracker was able to successfully track the dominant sound source

    A Novel Data-Aided Channel Estimation with Reduced Complexity for TDS-OFDM Systems

    Get PDF
    In contrast to the classical cyclic prefix (CP)-OFDM, the time domain synchronous (TDS)-OFDM employs a known pseudo noise (PN) sequence as guard interval (GI). Conventional channel estimation methods for TDS-OFDM are based on the exploitation of the PN sequence and consequently suffer from intersymbol interference (ISI). This paper proposes a novel dataaided channel estimation method which combines the channel estimates obtained from the PN sequence and, most importantly, additional channel estimates extracted from OFDM data symbols. Data-aided channel estimation is carried out using the rebuilt OFDM data symbols as virtual training sequences. In contrast to the classical turbo channel estimation, interleaving and decoding functions are not included in the feedback loop when rebuilding OFDM data symbols thereby reducing the complexity. Several improved techniques are proposed to refine the data-aided channel estimates, namely one-dimensional (1-D)/two-dimensional (2-D) moving average and Wiener filtering. Finally, the MMSE criteria is used to obtain the best combination results and an iterative process is proposed to progressively refine the estimation. Both MSE and BER simulations using specifications of the DTMB system are carried out to prove the effectiveness of the proposed algorithm even in very harsh channel conditions such as in the single frequency network (SFN) case

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    Estimation, Analysis and Smoothing of Self-Similar Network Induced Delays in Feedback Control of Nuclear Reactors

    Get PDF
    This paper analyzes a nuclear reactor power signal that suffers from network induced random delays in the shared data network while being fed-back to the Reactor Regulating System (RRS). A detailed study is carried out to investigate the self similarity of random delay dynamics due to the network traffic in shared medium. The fractionality or selfsimilarity in the network induced delay that corrupts the measured power signal coming from Self Powered Neutron Detectors (SPND) is estimated and analyzed. As any fractional order randomness is intrinsically different from conventional Gaussian kind of randomness, these delay dynamics need to be handled efficiently, before reaching the controller within the RRS. An attempt has been made to minimize the effect of the randomness in the reactor power transient data with few classes of smoothing filters. The performance measure of the smoothers with fractional order noise consideration is also investigated into.Comment: 6 pages, 6 figure

    GPS Multipath Detection in the Frequency Domain

    Full text link
    Multipath is among the major sources of errors in precise positioning using GPS and continues to be extensively studied. Two Fast Fourier Transform (FFT)-based detectors are presented in this paper as GPS multipath detection techniques. The detectors are formulated as binary hypothesis tests under the assumption that the multipath exists for a sufficient time frame that allows its detection based on the quadrature arm of the coherent Early-minus-Late discriminator (Q EmL) for a scalar tracking loop (STL) or on the quadrature (Q EmL) and/or in-phase arm (I EmL) for a vector tracking loop (VTL), using an observation window of N samples. Performance analysis of the suggested detectors is done on multipath signal data acquired from the multipath environment simulator developed by the German Aerospace Centre (DLR) as well as on multipath data from real GPS signals. Application of the detection tests to correlator outputs of scalar and vector tracking loops shows that they may be used to exclude multipath contaminated satellites from the navigation solution. These detection techniques can be extended to other Global Navigation Satellite Systems (GNSS) such as GLONASS, Galileo and Beidou.Comment: 2016 European Navigation Conference (ENC 2016), May 2016, Helsinki, Finland. Proceedings of the 2016 European Navigation Conference (ENC 2016
    • …
    corecore