3,651 research outputs found

    Real-Time Distributed Algorithms for Nonconvex Optimal Power Flow

    Get PDF
    The optimal power flow (OPF) problem, a fundamental problem in power systems, is generally nonconvex and computationally challenging for networks with an increasing number of smart devices and real-time control requirements. In this paper, we first investigate a fully distributed approach by means of the augmented Lagrangian and proximal alternating minimization method to solve the nonconvex OPF problem with a convergence guarantee. Given time-critical requirements, we then extend the algorithm to a distributed parametric tracking scheme with practical warm-starting and termination strategies, which aims to provide a closed-loop sub-optimal control policy while taking into account the grid information updated at the time of decision making. The effectiveness of the proposed algorithm for real-time nonconvex OPF problems is demonstrated in numerical simulations

    A Distributed Approach for the Optimal Power Flow Problem Based on ADMM and Sequential Convex Approximations

    Full text link
    The optimal power flow (OPF) problem, which plays a central role in operating electrical networks is considered. The problem is nonconvex and is in fact NP hard. Therefore, designing efficient algorithms of practical relevance is crucial, though their global optimality is not guaranteed. Existing semi-definite programming relaxation based approaches are restricted to OPF problems where zero duality holds. In this paper, an efficient novel method to address the general nonconvex OPF problem is investigated. The proposed method is based on alternating direction method of multipliers combined with sequential convex approximations. The global OPF problem is decomposed into smaller problems associated to each bus of the network, the solutions of which are coordinated via a light communication protocol. Therefore, the proposed method is highly scalable. The convergence properties of the proposed algorithm are mathematically substantiated. Finally, the proposed algorithm is evaluated on a number of test examples, where the convergence properties of the proposed algorithm are numerically substantiated and the performance is compared with a global optimal method.Comment: 14 page

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Moving-Horizon Dynamic Power System State Estimation Using Semidefinite Relaxation

    Full text link
    Accurate power system state estimation (PSSE) is an essential prerequisite for reliable operation of power systems. Different from static PSSE, dynamic PSSE can exploit past measurements based on a dynamical state evolution model, offering improved accuracy and state predictability. A key challenge is the nonlinear measurement model, which is often tackled using linearization, despite divergence and local optimality issues. In this work, a moving-horizon estimation (MHE) strategy is advocated, where model nonlinearity can be accurately captured with strong performance guarantees. To mitigate local optimality, a semidefinite relaxation approach is adopted, which often provides solutions close to the global optimum. Numerical tests show that the proposed method can markedly improve upon an extended Kalman filter (EKF)-based alternative.Comment: Proc. of IEEE PES General Mtg., Washnigton, DC, July 27-31, 2014. (Submitted
    corecore