20,427 research outputs found

    Sliding-mode neuro-controller for uncertain systems

    Get PDF
    In this paper, a method that allows for the merger of the good features of sliding-mode control and neural network (NN) design is presented. Design is performed by applying an NN to minimize the cost function that is selected to depend on the distance from the sliding-mode manifold, thus providing that the NN controller enforces sliding-mode motion in a closed-loop system. It has been proven that the selected cost function has no local minima in controller parameter space, so under certain conditions, selection of the NN weights guarantees that the global minimum is reached, and then the sliding-mode conditions are satisfied; thus, closed-loop motion is robust against parameter changes and disturbances. For controller design, the system states and the nominal value of the control input matrix are used. The design for both multiple-input-multiple-output and single-input-single-output systems is discussed. Due to the structure of the (M)ADALINE network used in control calculation, the proposed algorithm can also be interpreted as a sliding-mode-based control parameter adaptation scheme. The controller performance is verified by experimental results

    Linear Parameter Varying Control of Induction Motors

    Get PDF

    Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    Get PDF
    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input – output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities

    LSTM Neural Networks: Input to State Stability and Probabilistic Safety Verification

    Get PDF
    The goal of this paper is to analyze Long Short Term Memory (LSTM) neural networks from a dynamical system perspective. The classical recursive equations describing the evolution of LSTM can be recast in state space form, resulting in a time-invariant nonlinear dynamical system. A sufficient condition guaranteeing the Input-to-State (ISS) stability property of this class of systems is provided. The ISS property entails the boundedness of the output reachable set of the LSTM. In light of this result, a novel approach for the safety verification of the network, based on the Scenario Approach, is devised. The proposed method is eventually tested on a pH neutralization process.Comment: Accepted for Learning for dynamics & control (L4DC) 202

    Artificial Neuron-Based Model for a Hybrid Real-Time System: Induction Motor Case Study

    Get PDF
    Automatic Machine Learning (AML) methods are currently considered of great interest for use in the development of cyber-physical systems. However, in practice, they present serious application problems with respect to fitness computation, overfitting, lack of scalability, and the need for an enormous amount of time for the computation of neural network hyperparameters. In this work, we have experimentally investigated the impact of continuous updating and validation of the hyperparameters, on the performance of a cyber-physical model, with four estimators based on feedforward and narx ANNs, all with the gradient descent-based optimization technique. The main objective is to demonstrate that the optimized values of the hyperparameters can be validated by simulation with MATLAB/Simulink following a mixed approach based on interleaving the updates of their values with a classical training of the ANNs without affecting their efficiency and automaticity of the proposed method. For the two relevant variables of an Induction Motor (IM), two sets of estimators have been trained from the input current and voltage data. In contrast, the training data for the speed and output electromagnetic torque of the IM have been established with the help of a new Simulink model developed entirely. The results have demonstrated the effectiveness of ANN estimators obtained with the Deep Learning Toolbox (DLT) that we used to transform the trained ANNs into blocks that can be directly used in cyber-physical models designed with Simulink.Junta de Andalucia B-TIC-42-UGR20European CommissionSpanish Science Ministry (Ministerio de Ciencia e Innovacion) PID2020-112495RB-C2
    corecore