947 research outputs found

    Free-Space Quantum Key Distribution

    Full text link
    Based on the firm laws of physics rather than unproven foundations of mathematical complexity, quantum cryptography provides a radically different solution for encryption and promises unconditional security. Quantum cryptography systems are typically built between two nodes connected to each other through fiber optic. This chapter focuses on quantum cryptography systems operating over free-space optical channels as a cost-effective and license-free alternative to fiber optic counterparts. It provides an overview of the different parts of an experimental free-space quantum communication link developed in the Spanish National Research Council (Madrid, Spain).Comment: 22 pages, 15 figure

    Noncircularity exploitation in signal processing overview and application to radar

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Noncircular Waveforms Exploitation for Radar Signal Processing : Survey and Study for Agile Radar Waveform

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Perturbation Propagation Models for Underwater Sensor Localisation using Semidefinite Programming

    Get PDF
    Real time Underwater sensor networks (UWSNs) suffer from localisation issues due to a dearth of incorporation of different geometric scenarios in UWSN scenarios. To address these issues, this paper visualises three specific scenarios of perturbation. First, small sized and large numbered particles of perturbance moving in a tangential motion to the sensor nodes; second, a single numbered and large-sized particle moving in a rectilinear motion by displacing the sensor nodes into sideward and forward direction, and third, a radially outward propagating perturbance to observe the influenced sensor nodes as the perturbance moves outwards. A novel target localisation and tracking is facilitated by including marine vehicle navigation as a source of perturbation. Using semidefinite programming, the proposed perturbation models minimise localisation errors, thereby enhancing physical security of underwater sensor nodes. By leveraging the spin, cleaving motion and radial cast-away behaviour of underwater sensor nodes, the results confirm that the proposed propagation models can be conveniently applied to real time target detection and estimation of underwater target nodes

    A phase-based technique for localization of uhf-rfid tags moving on a conveyor belt: Performance analysis and test-case measurements

    Get PDF
    A new phase-based technique for localization and tracking of items moving along a conveyor belt and equipped with ultrahigh frequency-radio frequency identification (UHF-RFID) tags is described and validated here. The technique is based on a synthetic-array approach that takes advantage of the fact that the tagged items move along a conveyor belt whose speed and path are known apriori. In this framework, a joint use is done of synthetic-array radar principles, knowledge-based processing, and efficient exploitation of the reader-tag communication signal. The technique can be easily implemented in any conventional reader based on an in-phase and quadrature receiver and it does not require any modification of the reader antenna configurations usually adopted in UHF-RFID portals. Numerical results are used to investigate the performance analysis of such methods, and also to furnish system design guidelines. Finally, the localization capability is also demonstrated through a measurement campaign in a real conveyor belt scenario, showing that a centimeter-order accuracy in the tag position estimation can be achieved even in a rich multipath environment

    Distributed adaptive signal processing for frequency estimation

    Get PDF
    It is widely recognised that future smart grids will heavily rely upon intelligent communication and signal processing as enabling technologies for their operation. Traditional tools for power system analysis, which have been built from a circuit theory perspective, are a good match for balanced system conditions. However, the unprecedented changes that are imposed by smart grid requirements, are pushing the limits of these old paradigms. To this end, we provide new signal processing perspectives to address some fundamental operations in power systems such as frequency estimation, regulation and fault detection. Firstly, motivated by our finding that any excursion from nominal power system conditions results in a degree of non-circularity in the measured variables, we cast the frequency estimation problem into a distributed estimation framework for noncircular complex random variables. Next, we derive the required next generation widely linear, frequency estimators which incorporate the so-called augmented data statistics and cater for the noncircularity and a widely linear nature of system functions. Uniquely, we also show that by virtue of augmented complex statistics, it is possible to treat frequency tracking and fault detection in a unified way. To address the ever shortening time-scales in future frequency regulation tasks, the developed distributed widely linear frequency estimators are equipped with the ability to compensate for the fewer available temporal voltage data by exploiting spatial diversity in wide area measurements. This contribution is further supported by new physically meaningful theoretical results on the statistical behavior of distributed adaptive filters. Our approach avoids the current restrictive assumptions routinely employed to simplify the analysis by making use of the collaborative learning strategies of distributed agents. The efficacy of the proposed distributed frequency estimators over standard strictly linear and stand-alone algorithms is illustrated in case studies over synthetic and real-world three-phase measurements. An overarching theme in this thesis is the elucidation of underlying commonalities between different methodologies employed in classical power engineering and signal processing. By revisiting fundamental power system ideas within the framework of augmented complex statistics, we provide a physically meaningful signal processing perspective of three-phase transforms and reveal their intimate connections with spatial discrete Fourier transform (DFT), optimal dimensionality reduction and frequency demodulation techniques. Moreover, under the widely linear framework, we also show that the two most widely used frequency estimators in the power grid are in fact special cases of frequency demodulation techniques. Finally, revisiting classic estimation problems in power engineering through the lens of non-circular complex estimation has made it possible to develop a new self-stabilising adaptive three-phase transformation which enables algorithms designed for balanced operating conditions to be straightforwardly implemented in a variety of real-world unbalanced operating conditions. This thesis therefore aims to help bridge the gap between signal processing and power communities by providing power system designers with advanced estimation algorithms and modern physically meaningful interpretations of key power engineering paradigms in order to match the dynamic and decentralised nature of the smart grid.Open Acces

    QUANTUM KEY DISTRIBUTION LABORATORY DEMONSTRATION

    Get PDF
    Quantum key distribution (QKD) is a method of secure key distribution which provides protection against the tampering and interception of information. Following the Bennet-Brassard 1984 (BB84) protocol of QKD, we select randomly from a set of bases in which to produce polarized photons and send the photons to a receiver, who measures them in a basis randomly selected from the same set. The fact that quantum mechanics prohibits the exact copying of a photon ensures that any eavesdropper who intercepts, measures, and attempts to pass the photons on to the receiver will be unable to faithfully reproduce that signal. The presence of the eavesdropper can then be detected, prior to any exchange of information, by an examination of the error rate between portions of the keys generated by the sender and receiver. Using a biphoton source, we have constructed a QKD system for use in research towards naval applications.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell
    • …
    corecore