1,097 research outputs found

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications

    Get PDF
    With the advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors, new opportunities are emerging for applying deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of the medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies ranging from emerging memristive devices, to established Field Programmable Gate Arrays (FPGAs), and mature Complementary Metal Oxide Semiconductor (CMOS) technology can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. After providing the required background, we unify the sparsely distributed research on neural network and neuromorphic hardware implementations as applied to the healthcare domain. In addition, we benchmark various hardware platforms by performing a biomedical electromyography (EMG) signal processing task and drawing comparisons among them in terms of inference delay and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that different accelerators and neuromorphic processors introduce to healthcare and biomedical domains. This paper can serve a large audience, ranging from nanoelectronics researchers, to biomedical and healthcare practitioners in grasping the fundamental interplay between hardware, algorithms, and clinical adoption of these tools, as we shed light on the future of deep networks and spiking neuromorphic processing systems as proponents for driving biomedical circuits and systems forward.Comment: Submitted to IEEE Transactions on Biomedical Circuits and Systems (21 pages, 10 figures, 5 tables

    Autonomously Reconfigurable Artificial Neural Network on a Chip

    Get PDF
    Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved very effective in a variety of real-world problems and particularly useful for various emerging biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based systems are increasingly vulnerable to both transient and permanent faults due to unrelenting advances in CMOS technology scaling, which sometimes can be catastrophic. The considerable resource and energy consumption and the lack of dynamic adaptability make conventional fault-tolerant techniques unsuitable for future portable medical solutions. Inspired by the self-healing and self-recovery mechanisms of human nervous system, this research seeks to address reliability issues of ANN-based hardware by proposing an Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework. Leveraging the homogeneous structural characteristics of neural networks, ARANN is capable of adapting its structures and operations, both algorithmically and microarchitecturally, to react to unexpected neuron failures. Specifically, we propose three key techniques --- Distributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchronization --- to achieve cost-effective structural adaptation and ensure accurate system recovery. Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a "Pareto-optimal" neural network structure for a given application, on the fly. Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93% chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A detailed performance analysis has been completed based on various recovery scenarios

    The DeepHealth Toolkit: A key European free and open-source software for deep learning and computer vision ready to exploit heterogeneous HPC and cloud architectures

    Get PDF
    At the present time, we are immersed in the convergence between Big Data, High-Performance Computing and Artificial Intelligence. Technological progress in these three areas has accelerated in recent years, forcing different players like software companies and stakeholders to move quickly. The European Union is dedicating a lot of resources to maintain its relevant position in this scenario, funding projects to implement large-scale pilot testbeds that combine the latest advances in Artificial Intelligence, High-Performance Computing, Cloud and Big Data technologies. The DeepHealth project is an example focused on the health sector whose main outcome is the DeepHealth toolkit, a European unified framework that offers deep learning and computer vision capabilities, completely adapted to exploit underlying heterogeneous High-Performance Computing, Big Data and cloud architectures, and ready to be integrated into any software platform to facilitate the development and deployment of new applications for specific problems in any sector. This toolkit is intended to be one of the European contributions to the field of AI. This chapter introduces the toolkit with its main components and complementary tools, providing a clear view to facilitate and encourage its adoption and wide use by the European community of developers of AI-based solutions and data scientists working in the healthcare sector and others. iThis chapter describes work undertaken in the context of the DeepHealth project, “Deep-Learning and HPC to Boost Biomedical Applications for Health”, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825111.Peer Reviewed"Article signat per 19 autors/es: Marco Aldinucci, David Atienza, Federico Bolelli, Mónica Caballero, Iacopo Colonnelli, José Flich, Jon A. Gómez, David González, Costantino Grana, Marco Grangetto, Simone Leo, Pedro López, Dana Oniga, Roberto Paredes, Luca Pireddu, Eduardo Quiñones, Tatiana Silva, Enzo Tartaglione & Marina Zapater "Postprint (author's final draft
    • …
    corecore