1,345 research outputs found

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Realistic tool-tissue interaction models for surgical simulation and planning

    Get PDF
    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in pre- and intra-operative surgical planning. Realistic modeling of medical interventions involving tool-tissue interactions has been considered to be a key requirement in the development of high-fidelity simulators and planners. The soft-tissue constitutive laws, organ geometry and boundary conditions imposed by the connective tissues surrounding the organ, and the shape of the surgical tool interacting with the organ are some of the factors that govern the accuracy of medical intervention planning.\ud \ud This thesis is divided into three parts. First, we compare the accuracy of linear and nonlinear constitutive laws for tissue. An important consequence of nonlinear models is the Poynting effect, in which shearing of tissue results in normal force; this effect is not seen in a linear elastic model. The magnitude of the normal force for myocardial tissue is shown to be larger than the human contact force discrimination threshold. Further, in order to investigate and quantify the role of the Poynting effect on material discrimination, we perform a multidimensional scaling study. Second, we consider the effects of organ geometry and boundary constraints in needle path planning. Using medical images and tissue mechanical properties, we develop a model of the prostate and surrounding organs. We show that, for needle procedures such as biopsy or brachytherapy, organ geometry and boundary constraints have more impact on target motion than tissue material parameters. Finally, we investigate the effects surgical tool shape on the accuracy of medical intervention planning. We consider the specific case of robotic needle steering, in which asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. We present an analytical and finite element (FE) model for the loads developed at the bevel tip during needle-tissue interaction. The analytical model explains trends observed in the experiments. We incorporated physical parameters (rupture toughness and nonlinear material elasticity) into the FE model that included both contact and cohesive zone models to simulate tissue cleavage. The model shows that the tip forces are sensitive to the rupture toughness. In order to model the mechanics of deflection of the needle, we use an energy-based formulation that incorporates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot-driven needle interacting with gels

    A composite hydrogel for brain tissue phantoms

    Get PDF
    Synthetic phantoms are valuable tools for training, research and development in traditional and computer aided surgery, but complex organs, such as the brain, are difficult to replicate. Here, we present the development of a new composite hydrogel capable of mimicking the mechanical response of brain tissue under loading. Our results demonstrate how the combination of two different hydrogels, whose synergistic interaction results in a highly tunable blend, produces a hybrid material that closely matches the strongly dynamic and non-linear response of brain tissue. The new synthetic material is inexpensive, simple to prepare, and its constitutive components are both widely available and biocompatible. Our investigation of the properties of this engineered tissue, using both small scale testing and life-sized brain phantoms, shows that it is suitable for reproducing the brain shift phenomenon and brain tissue response to indentation and palpation

    Patient-specific simulation environment for surgical planning and preoperative rehearsal

    Get PDF
    Surgical simulation is common practice in the fields of surgical education and training. Numerous surgical simulators are available from commercial and academic organisations for the generic modelling of surgical tasks. However, a simulation platform is still yet to be found that fulfils the key requirements expected for patient-specific surgical simulation of soft tissue, with an effective translation into clinical practice. Patient-specific modelling is possible, but to date has been time-consuming, and consequently costly, because data preparation can be technically demanding. This motivated the research developed herein, which addresses the main challenges of biomechanical modelling for patient-specific surgical simulation. A novel implementation of soft tissue deformation and estimation of the patient-specific intraoperative environment is achieved using a position-based dynamics approach. This modelling approach overcomes the limitations derived from traditional physically-based approaches, by providing a simulation for patient-specific models with visual and physical accuracy, stability and real-time interaction. As a geometrically- based method, a calibration of the simulation parameters is performed and the simulation framework is successfully validated through experimental studies. The capabilities of the simulation platform are demonstrated by the integration of different surgical planning applications that are found relevant in the context of kidney cancer surgery. The simulation of pneumoperitoneum facilitates trocar placement planning and intraoperative surgical navigation. The implementation of deformable ultrasound simulation can assist surgeons in improving their scanning technique and definition of an optimal procedural strategy. Furthermore, the simulation framework has the potential to support the development and assessment of hypotheses that cannot be tested in vivo. Specifically, the evaluation of feedback modalities, as a response to user-model interaction, demonstrates improved performance and justifies the need to integrate a feedback framework in the robot-assisted surgical setting.Open Acces

    On-pump vascular reperfusion of Thiel embalmed cadavers

    Get PDF

    Development of a Reality-Based, Haptics-Enabled Simulator for Tool-Tissue Interactions

    Get PDF
    The advent of complex surgical procedures has driven the need for finite element based surgical training simulators which provide realistic visual and haptic feedback throughout the surgical task. The foundation of a simulator stems from the use of accurate, reality-based models for the global tissue response as well as the tool-tissue interactions. To that end, ex vivo and in vivo tests were conducted for soft-tissue probing and in vivo tests were conducted for soft-tissue cutting for the purpose of model development. In formulating a surgical training system, there is a desire to replicate the surgical task as accurately as possible for haptic and visual realism. However, for many biological tissues, there is a discrepancy between the mechanical characteristics of ex vivo and in vivo tissue. The efficacy of utilizing an ex vivo model for simulation of in vivo probing tasks on porcine liver was evaluated by comparing the simulated probing task to an identical in vivo probing experiment. The models were then further improved upon to better replicate the in vivo response. During the study of cutting modeling, in vivo cutting experiments were performed on porcine liver to derive the force-displacement response of the tissue to a scalpel blade. Using this information, a fracture mechanics based approach was applied to develop a fully defined cohesive zone model governing the separation properties of the liver directly in front of the scalpel blade. Further, a method of scaling the cohesive zone parameters was presented to minimize the computational expense in an effort to apply the cohesive based cutting approach to real-time simulators. The development of the models for the global tissue response and local tool-tissue interactions for probing and cutting of soft-tissue provided the framework for real-time simulation of basic surgical skills training. Initially, a pre-processing approach was used for the development of reality-based, haptics enabled simulators for probing and cutting of soft tissue. Then a real-time finite element based simulator was developed to simulate the probing task without the need to know the tool path prior to simulation

    Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation

    Full text link
    Modeling the liver deformation forms the basis for the development of new clinical applications that improve the diagnosis, planning and guidance in liver surgery. However, the patient-specific modeling of this organ and its validation are still a challenge in Biomechanics. The reason is the difficulty to measure the mechanical response of the in vivo liver tissue. The current approach consist of performing minimally invasive or open surgery aimed at estimating the elastic constant of the proposed biomechanical models. This dissertation presents how the use of medical image analysis and evolutionary computation allows the characterization of the biomechanical behavior of the liver, avoiding the use of these minimally invasive techniques. In particular, the use of similarity coefficients commonly used in medical image analysis has permitted, on one hand, to estimate the patient-specific biomechanical model of the liver avoiding the invasive measurement of its mechanical response. On the other hand, these coefficients have also permitted to validate the proposed biomechanical models. Jaccard coefficient and Hausdorff distance have been used to validate the models proposed to simulate the behavior of ex vivo lamb livers, calculating the error between the volume of the experimentally deformed samples of the livers and the volume from biomechanical simulations of these deformations. These coefficients has provided information, such as the shape of the samples and the error distribution along their volume. For this reason, both coefficients have also been used to formulate a novel function, the Geometric Similarity Function (GSF). This function has permitted to establish a methodology to estimate the elastic constants of the models proposed for the human liver using evolutionary computation. Several optimization strategies, using GSF as cost function, have been developed aimed at estimating the patient-specific elastic constants of the biomechanical models proposed for the human liver. Finally, this methodology has been used to define and validate a biomechanical model proposed for an in vitro human liver.Martínez Martínez, F. (2014). Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39337TESI

    Variational methods for modeling and simulation of tool-tissue interaction

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Virtual Reality – A New Era in Surgical Training

    Get PDF
    corecore