19 research outputs found

    Controlled metamorphosis between skeleton-driven animated polyhedral meshes of arbitrary topologies

    Get PDF
    Enabling animators to smoothly transform between animated meshes of differing topologies is a long-standing problem in geometric modelling and computer animation. In this paper, we propose a new hybrid approach built upon the advantages of scalar field-based models (often called implicit surfaces) which can easily change their topology by changing their defining scalar field. Given two meshes, animated by their rigging-skeletons, we associate each mesh with its own approximating implicit surface. This implicit surface moves synchronously with the mesh. The shape-metamorphosis process is performed in several steps: first, we collapse the two meshes to their corresponding approximating implicit surfaces, then we transform between the two implicit surfaces and finally we inverse transition from the resulting metamorphosed implicit surface to the target mesh. The examples presented in this paper demonstrating the results of the proposed technique were implemented using an in-house plug-in for Maya™. © 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd

    Hybrid modelling of time-variant heterogeneous objects.

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve

    Hybrid modelling of time-variant heterogeneous objects

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Software Takes Command

    Get PDF
    This book is available as open access through the Bloomsbury Open Access programme and is available on www.bloomsburycollections.com. Software has replaced a diverse array of physical, mechanical, and electronic technologies used before 21st century to create, store, distribute and interact with cultural artifacts. It has become our interface to the world, to others, to our memory and our imagination - a universal language through which the world speaks, and a universal engine on which the world runs. What electricity and combustion engine were to the early 20th century, software is to the early 21st century. Offering the the first theoretical and historical account of software for media authoring and its effects on the practice and the very concept of 'media,' the author of The Language of New Media (2001) develops his own theory for this rapidly-growing, always-changing field. What was the thinking and motivations of people who in the 1960 and 1970s created concepts and practical techniques that underlie contemporary media software such as Photoshop, Illustrator, Maya, Final Cut and After Effects? How do their interfaces and tools shape the visual aesthetics of contemporary media and design? What happens to the idea of a 'medium' after previously media-specific tools have been simulated and extended in software? Is it still meaningful to talk about different mediums at all? Lev Manovich answers these questions and supports his theoretical arguments by detailed analysis of key media applications such as Photoshop and After Effects, popular web services such as Google Earth, and the projects in motion graphics, interactive environments, graphic design and architecture. Software Takes Command is a must for all practicing designers and media artists and scholars concerned with contemporary media

    Software Takes Command

    Get PDF
    This book is available as open access through the Bloomsbury Open Access programme and is available on www.bloomsburycollections.com. Software has replaced a diverse array of physical, mechanical, and electronic technologies used before 21st century to create, store, distribute and interact with cultural artifacts. It has become our interface to the world, to others, to our memory and our imagination - a universal language through which the world speaks, and a universal engine on which the world runs. What electricity and combustion engine were to the early 20th century, software is to the early 21st century. Offering the the first theoretical and historical account of software for media authoring and its effects on the practice and the very concept of 'media,' the author of The Language of New Media (2001) develops his own theory for this rapidly-growing, always-changing field. What was the thinking and motivations of people who in the 1960 and 1970s created concepts and practical techniques that underlie contemporary media software such as Photoshop, Illustrator, Maya, Final Cut and After Effects? How do their interfaces and tools shape the visual aesthetics of contemporary media and design? What happens to the idea of a 'medium' after previously media-specific tools have been simulated and extended in software? Is it still meaningful to talk about different mediums at all? Lev Manovich answers these questions and supports his theoretical arguments by detailed analysis of key media applications such as Photoshop and After Effects, popular web services such as Google Earth, and the projects in motion graphics, interactive environments, graphic design and architecture. Software Takes Command is a must for all practicing designers and media artists and scholars concerned with contemporary media

    Radicle Assemblages

    Get PDF
    Radicle Assemblages explores aesthetic praxis through an experiential research-creation doctorate in the Interdisciplinary Humanities Fine Arts program. This studio-based project interwove diverse phenomena through speculative narratives inclusive of matter, thinking with techné, and in contemplation with living entities. The artworks that were developed in this study explored aesthetic modes of relational play among natureculture assemblages. The artworks acted as a form of dialogue to contemplate what would become defined as relations of tender curation. Individual gestures were composed for learning care and expanded perception through artistic experiments with domesticated natures such as houseplants, bacteria, algae, gastropods, and yeast (among others). The concept of tender curation emerged where what became a central component of an artwork required daily attendance. These experiences opened to a kind of tending that inspired affection and concern for the living creatures that were assembled within artworks. Another concept that formed was the radicle assemblage as a motif for thinking with differences among beings that are unique yet unfolding together in shared or common space. Comprehending subtle affects through interactions with vegetal life led to concern regarding personal and ethical implications of artworks that were composed with living phenomena. The living beings changed one another in their interactions. As a result, the artworks shifted over the duration of the study increasingly towards co-creative relations with domesticated, urbanized, or shared-territory beings as a way that incrementally expanded the artist-researcher’s ability to respond. Through practice and in the dissemination of multiple artworks, this research-creation doctorate eventually gravitated towards a post-anthropocentric art of response-responsibility. In this sense, the research-creation methodology evolved as a form of contemporary art practice that performed an expansion of possible social relations through generative propositions as incremental research

    Animation & Cartoons

    Get PDF
    An animated cartoon is a short, hand-drawn (or made with computers to look similar to something hand-drawn) moving picture for the cinema, TV or computer screen, featuring some kind of story or plot. Animation is the optical illusion of motion created by the consecutive display of images of static elements. In film and video production, this refers to techniques by which each frame of a film or movie is produced individually. Computer animation is the art of creating moving images via the use of computers. It is a subfield of computer graphics and animation. Anime is a medium of animation originating in Japan, with distinctive character and background aesthetics that visually set it apart from other forms of animation. An animated cartoon is a short, hand-drawn (or made with computers to look similar to something hand-drawn) moving picture for the cinema, TV or computer screen, featuring some kind of story or plot (even if it is a very short one). Manga is the Japanese word for comics and print cartoons. Outside of Japan, it usually refers specifically to Japanese comics. Special effects (abbreviated SPFX or SFX) are used in the film, television, and entertainment industry to visualize scenes that cannot be achieved by normal means, such as space travel. Stop motion is a generic gereral term for an animation technique which makes static objects appear to move

    The Augmented Learner : The pivotal role of multimedia enhanced learning within a foresight-based learning model designed to accelerate the delivery of higher levels of learner creativity

    Get PDF
    The central theme for this dissertation lies at the intersection of multisensory technology enhanced learning, the field of foresight and transformative pedagogy and their role in helping to develop greater learner creativity. These skills will be key to meeting the needs of the projected growing role of the creative class within the emerging global workforce structure and the projected growth in R&D and the advancement of human-machine resource management. Over the past two decades, we have traversed from the Industrial Age through the Information Age into what we now call postnormal times, manifested partly in Industry 4.0. It is widely considered that the present education system in countries with developed economies is not optimised for delivering the much-needed creative skills, which are prominent amongst the critical 21st C skills required by the creative class, (also known as creatives), which will be increasingly dominant in terms of near future employability. Consequently, there will be a potential shortfall of creatives unless this issue is rapidly addressed. To ensure that the creative skills I aimed to enhance were relevant and aligned with emerging demands of the changing landscape, I deconstructed the critical dimensions, context, and concept of creativity in postnormal times as well as undertaking in-depth research on the potential future workscape and the future of education and learning, applying a comprehensive foresight approach to the latter using a 2030-2040 horizon. Based upon the outcomes of these studies I designed an experimental integrative learning system that I have applied, researched, and evolved over the past 4 years with over 150 students at PhD and master’s level. The system is aimed at generating higher levels of creative engagement and development through a focus on increased immersion and creativity-inducing approaches. The system, which I call the Living Learning System, is based upon eight integrated elements, supported by course development pillars aimed at optimizing learner future skill competencies and levels of creativity for which I apply severalevaluation techniques and metrics. Accordingly, as the central hypothesis of this dissertation, I argue that by integrating the critical elements of the Living Learning System, such as emerging multisensory technology enhanced learning coupled with optimised transformative and experiential learning approaches, framed within the field of foresight, with its futures focus and decentralised thinking approaches, students increase their ability to be creative. This increased ability is based on the student attaining a richer level of personal ambience through deeper immersion generated through higher incidence of self-direction, constructivism-based blended pedagogy, futures literacy, and a balance of decentralised and systems-based thinking, as well as cognitive and social platforms aimed at optimizing learner creative achievement. This dissertation demonstrates how the application of the combined elements of the Living Learning System, with its futures focus and its ensuing transdisciplinary curricula and courses, can provide a clear path towards significantly increased learner creativity. The findings of the quantitative, questionnaire-based research set out in detail in Chapter 9, together with the performance and creativity evaluation models applied against the selected case studies of student projects substantiate the validity of the hypothesis that the application of the Living Learning System with its futures focus leads to increased creativity in line with the needs of the postnormal era.publishedVersio

    Representation Challenges

    Get PDF

    The Third Digital Turn of Non-Standard Architecture

    Get PDF
    This thesis explores Non-Standard Architecture, a movement in Postmodern architecture on non-Euclidean parametric and algorithmic formalism, and suggests a series of inherent limits prevented its full realisation. The thesis answers how these limits might be overcome by formulating the Third Digital Turn of Non-Standard. The Third Digital Turn emerged from the Second Digital Turn, an architectural movement from 2012 that realised parametric architecture through novel methods of form finding and construction using parametric data models and robotics. Through the Third Digital Turn the thesis formulates the Statutes of Non-Standard Architecture that describe the process of legislation in terms of the invention of new practice for Non-Standard Architecture. The thesis traces the evolution of the Second Digital Turn through novel interpretations of geometric lineage across architectural epochs, and identifies parametrisation with the codified law of architecture beginning in the Renaissance. The thesis identifies a gap between the possibilities of digital technologies in architecture and the current capacities of the building industry to realise them. Persistent challenges to achieving these objectives of automation are the limits of the regulatory environment and conservative construction practices. The thesis argues that such inherent limits can be overcome by reconsidering the existing regulations that frame technology and by implementing a methodology for ecological governance in architecture. The thesis contributes to the field in two key areas. First, it evolves Non-Standard architectural codification and production processes to extend the capacity of existing skills and technologies. Second, it indicates opportunities for environmental sustainability with protocols for Non-Standard design and construction, functional grading of material and automation in architecture
    corecore