743 research outputs found

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character

    A deformation transformer for real-time cloth animation

    Get PDF
    Achieving interactive performance in cloth animation has significant implications in computer games and other interactive graphics applications. Although much progress has been made, it is still much desired to have real-time high-quality results that well preserve dynamic folds and wrinkles. In this paper, we introduce a hybrid method for real-time cloth animation. It relies on datadriven models to capture the relationship between cloth deformations at two resolutions. Such data-driven models are responsible for transforming low-quality simulated deformations at the low resolution into high-resolution cloth deformations with dynamically introduced fine details. Our data-driven transformation is trained using rotation invariant quantities extracted from the cloth models, and is independent of the simulation technique chosen for the lower resolution model. We have also developed a fast collision detection and handling scheme based on dynamically transformed bounding volumes. All the components in our algorithm can be efficiently implemented on programmable graphics hardware to achieve an overall real-time performance on high-resolution cloth models. © 2010 ACM.postprin

    From early draping to haute couture models: 20 years of research

    Get PDF
    Simulating the complex fashion garments of haute couture can only be reached through an optimal combination of modeling techniques and numerical methods that combines high computation efficiency with the versatility required for simulating intricate garment designs. Here we describe optimal choices illustrated by their integration into a design and simulation tool that allow interactive prototyping of garments along drape motion and comfortability tests on animated postures. These techniques have been successfully used to bring haute couture garments from early draping of fashion designers, to be simulated and visualized in the virtual worl

    Discrete Differential Geometry of Thin Materials for Computational Mechanics

    Get PDF
    Instead of applying numerical methods directly to governing equations, another approach to computation is to discretize the geometric structure specific to the problem first, and then compute with the discrete geometry. This structure-respecting discrete-differential-geometric (DDG) approach often leads to new algorithms that more accurately track the physically behavior of the system with less computational effort. Thin objects, such as pieces of cloth, paper, sheet metal, freeform masonry, and steel-glass structures are particularly rich in geometric structure and so are well-suited for DDG. I show how understanding the geometry of time integration and contact leads to new algorithms, with strong correctness guarantees, for simulating thin elastic objects in contact; how the performance of these algorithms can be dramatically improved without harming the geometric structure, and thus the guarantees, of the original formulation; how the geometry of static equilibrium can be used to efficiently solve design problems related to masonry or glass buildings; and how discrete developable surfaces can be used to model thin sheets undergoing isometric deformation

    Automatic tailoring and cloth modelling for animation characters.

    Get PDF
    The construction of realistic characters has become increasingly important to the production of blockbuster films, TV series and computer games. The outfit of character plays an important role in the application of virtual characters. It is one of the key elements reflects the personality of character. Virtual clothing refers to the process that constructs outfits for virtual characters, and currently, it is widely used in mainly two areas, fashion industry and computer animation. In fashion industry, virtual clothing technology is an effective tool which creates, edits and pre-visualises cloth design patterns efficiently. However, using this method requires lots of tailoring expertises. In computer animation, geometric modelling methods are widely used for cloth modelling due to their simplicity and intuitiveness. However, because of the shortage of tailoring knowledge among animation artists, current existing cloth design patterns can not be used directly by animation artists, and the appearance of cloth depends heavily on the skill of artists. Moreover, geometric modelling methods requires lots of manual operations. This tediousness is worsen by modelling same style cloth for different characters with different body shapes and proportions. This thesis addresses this problem and presents a new virtual clothing method which includes automatic character measuring, automatic cloth pattern adjustment, and cloth patterns assembling. There are two main contributions in this research. Firstly, a geodesic curvature flow based geodesic computation scheme is presented for acquiring length measurements from character. Due to the fast growing demand on usage of high resolution character model in animation production, the increasing number of characters need to be handled simultaneously as well as improving the reusability of 3D model in film production, the efficiency of modelling cloth for multiple high resolution character is very important. In order to improve the efficiency of measuring character for cloth fitting, a fast geodesic algorithm that has linear time complexity with a small bounded error is also presented. Secondly, a cloth pattern adjusting genetic algorithm is developed for automatic cloth fitting and retargeting. For the reason that that body shapes and proportions vary largely in character design, fitting and transferring cloth to a different character is a challenging task. This thesis considers the cloth fitting process as an optimization procedure. It optimizes both the shape and size of each cloth pattern automatically, the integrity, design and size of each cloth pattern are evaluated in order to create 3D cloth for any character with different body shapes and proportions while preserve the original cloth design. By automating the cloth modelling process, it empowers the creativity of animation artists and improves their productivity by allowing them to use a large amount of existing cloth design patterns in fashion industry to create various clothes and to transfer same design cloth to characters with different body shapes and proportions with ease
    • …
    corecore