78 research outputs found

    Intraoperative tissue classification methods in orthopedic and neurological surgeries: A systematic review

    Full text link
    Accurate tissue differentiation during orthopedic and neurological surgeries is critical, given that such surgeries involve operations on or in the vicinity of vital neurovascular structures and erroneous surgical maneuvers can lead to surgical complications. By now, the number of emerging technologies tackling the problem of intraoperative tissue classification methods is increasing. Therefore, this systematic review paper intends to give a general overview of existing technologies. The review was done based on the PRISMA principle and two databases: PubMed and IEEE Xplore. The screening process resulted in 60 full-text papers. The general characteristics of the methodology from extracted papers included data processing pipeline, machine learning methods if applicable, types of tissues that can be identified with them, phantom used to conduct the experiment, and evaluation results. This paper can be useful in identifying the problems in the current status of the state-of-the-art intraoperative tissue classification methods and designing new enhanced techniques

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    The evaluation of bone strength

    Get PDF
    Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill bit penetration and drill bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. This research demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the strength/quality of the bone. Drilling force does not give a direct measure of bone strength; therefore it has been correlated with the shear strength and screw pullout strength to determine the efficacy in estimating the bone strength. Various synthetic bone material densities and animal bones have been tested to demonstrate the use of drilling force data. A novel automated experimental test rig, which enables drilling tests, screw insertion and screw pullout tests to be carried out in a controlled environment, has been developed. Both drilling and screw pullout tests have been carried out in a single setting of the specimen to reduce the experimental errors and increase repeatability of the results. A significantly high value of correlation (rĀ² > 0.99) between drilling force & shear strength and also between drilling force & normalised screw pullout strength in synthetic bone material was found. Furthermore, a high value of correlation (rĀ² = 0.958 for pig bones and rĀ² = 0.901 for lamb bones) between maximum drilling force & normalised screw pullout strength was also found. The result shows that drilling data can be used to predict material strength. Bone screws are extensively used during the internal fixation of fractured bones. The amount of screw been tightened is one of the main factor which affects the bone-screw fixation quality. Over tightening of screw can result into the loss of bone-screw fixation strength, whereas under tightening can result in the screw loosening. Therefore, optimum tightening of the screw is important to achieve the maximum bone-screw fixation strength. At present, optimum tightening of the screw is entirely dependent upon the skill and judgment of the surgeon, which is predominantly based on the feel of the screw tightening torque. Various studies have been reported in the literature to develop an algorithm to set an optimum tightening torque value to be used in surgery. A method which is based on the use of rotation angle of the screw while tightening, rather than using screw insertion/tightening torque, to optimise the bone-screw fixation strength is proposed in this research. The effectiveness of the proposed method has been successfully demonstrated on the synthetic bone material using the designed test rig. The optimum angle for the tested screw was found to be 120Ā° which is equivalent to 33% of the screw pitch.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    DEVELOPMENT OF A LOW COST PRECISION POLISHING MACHINE BASED ON PARALLEL KINEMATIC SYSTEM

    Get PDF
    The increasing demand on mass production of high precision parts, has pushed the precision manufacturing industry to develop reliable precision finishing processes such as Bonnet polishing to address market requirements. Indeed, the nature of the surface to be polished plays an important role in the design of a possible polishing machine. A gap within the research in polishing for precision industry needs has been identified. Small parts with <50mm x 50mm and possible freeform curvature containing small slopes cannot be polished with available bonnet polishing (BP) processes on market. This is caused by the tool head size and the tool holder being bigger than part curvature or the part itself. Although, the BP process has a huge potential for surface roughness improvement and form accuracy, it is generally seen in industry as an expensive solution for a non-deterministic finishing process. Therefore, this project has sought to develop a BP machine to cover the gap with an innovative and inexpensive design. In order to develop a machine which responded to the market expectations all possible requirements were listed from a customer point of view. Based on the requirement, a machine concept was produced. Market analysis helped to identify sub-systems of the machine. FEA analysis of the design was performed to check for stress distribution and displacement due to its own mass. Additional assembly parts are designed and a prototype of the machine was produced. The designed machine is tested for its ability as precision polishing machine. Flat surfaces of P20 tool steel were targets for polishing to nanometric surface finishes. Empirical experiments helped to identify parameters which influenced the surface roughness. Taguchi method were then used to optimise the parameters for better surface roughness. Optimum parameters conditions helped to reach less than 10 nm Ra systematically and repeatedly. The samples were also polished using re-circulating slurry techniques, and the obtained results were discussed. Further, pre polishing, Grolishing processes capable of improving surface roughness from ground finish to mirror like finish were developed for cost effective manufacturing procedures. The material removal was analysed to identify parameters capable of improving surface roughness over a step grolishing process. Two grolishing procedures were developed. Both processes produced nanometric range surface finishes. Other variations in results were compared and discussed. Although, machine axis has the ability to produce freeform movement, tool holders need to be improved to facilitate the identification of the distance between tool origin and workpiece origin. Therefore, a new spindle holder assembly is produced to hold the tool and an optical measurement device DRI used to evaluate accurately the distance separating the tool-workpiece origin and further align the workpiece inclination with respect to the machine axis. A CAD-CAM package is also developed to generate programme capable of performing freeform curvature

    Multi-Agent Modeling for Integrated Process Planning and Scheduling

    Get PDF
    Multi-agent systems have been used for modelling various problems in the social, biological and technical domain. When comes to technical systems, especially manufacturing systems, agents are most often applied in optimization and scheduling problems. Traditionally, scheduling is done after creation of process plans. In this paper, agent methodology is used for integration of these two functions. The proposed multi-agent architecture provides simultaneous performance of process planning and scheduling and it consists of four intelligent agents: part and job agents, machine agent, and optimization agent. Verification and feasibility of a proposed approach is conducted using agent based simulation in AnyLogic software

    Multi-Agent Modeling for Integrated Process Planning and Scheduling

    Get PDF
    Multi-agent systems have been used for modelling various problems in the social, biological and technical domain. When comes to technical systems, especially manufacturing systems, agents are most often applied in optimization and scheduling problems. Traditionally, scheduling is done after creation of process plans. In this paper, agent methodology is used for integration of these two functions. The proposed multi-agent architecture provides simultaneous performance of process planning and scheduling and it consists of four intelligent agents: part and job agents, machine agent, and optimization agent. Verification and feasibility of a proposed approach is conducted using agent based simulation in AnyLogic software

    A Short Review on 4D Printing

    Get PDF
    Additive Manufacturing can be described as a process to build 3D objects by adding layer-upon-layer of material, the material traditionally being plastics, metals or ceramics, however ā€˜smartā€™ materials are now in use. Nowadays, the term ā€œ3D Printingā€ has become a much-used synonym for additive manufacturing. The use of computing, 3D solid modeling applications, layering materials and machine equipment is common to majority of additive manufacturing technologies. Advancing from this 3D printing technology, is an emerging trend for what is being termed ā€œ4D printingā€. 4D printing places dependency on smart materials, the functionality of additive manufacturing machines and in ingenious design processes. Although many developments have been made, limitations are still very much in existence, particularly with regards to function and application. The objective of this short review is to discuss the developments, challenges and outlook for 4D printing technology. The review revealed that 4D printing technology has application potential but further research work will be vital for the future success of 4D printing
    • ā€¦
    corecore