518 research outputs found

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose. This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations. This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity; • be informed about the levels of natural radioactivity caused by different sources; • have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor; • and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.JRC.G.10-Knowledge for Nuclear Security and Safet

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose.This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations.This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity;• be informed about the levels of natural radioactivity caused by different sources;• have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor;• and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.Additional information at: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiatio

    Gridovi fine prostorne rezolucije dnevnih visina snijega za Rumunjsku (2005.–2015.)

    Get PDF
    This study presents the spatial interpolation procedure from snow depth measurements at weather stations implying the following stages: (1) Spatial interpolation at 1 km × 1 km resolution of the mean multiannual values (2005-2015) corresponding to each month, computed from the data extracted from the climatological database; (2) Computation of the daily deviations against the multiannual monthly mean for every day and year over 2005–2015 and their spatial interpolation; (3) Spatio-temporal datasets were obtained through merging the two surfaces obtained in stages 1 and 2. The anomalies were considered to be the ratio between the daily snow depth values and the climatology. The spatial variability of the data used in the first stage was accounted for through the use of a series of predictors derived from the digital elevation model (DEM). To plot the maps with the climatological normals (multiannual means), the Regression-Kriging (RK) spatial interpolation method was used. In order to choose the optimum method applied in spatializing deviations, four interpolation methods were tested using a cross-validation procedure: Multiquadratic, Ordinary Kriging (separated and pooled variograms) and 3d Kriging.Ova studija prikazuje proceduru prostorne interpolacije mjerenja dubine snijega na meteorološkim postajama koja podrazumijeva sljedeće faze: (1) prostorna interpolacija pri rezoluciji od 1 km x 1 km srednjih višegodišnjih vrijednosti (2005.–2015.), koja se provodi s podacima iz klimatološke baze; (2) izračunavanje dnevnih odstupanja od višegodišnjeg mjesečnog srednjaka za svaki dan i godinu tijekom razdoblja od 2005. do 2015. i njihova prostorna interpolacija; (3) prostorno-vremenski skup podataka dobiven je združivanjem procjena dobivenih u fazi 1 i 2. Odstupanja su definirana kao omjeri dnevnih vrijednosti dubine snijeg i klimatološkog srednjaka. Prostorna varijabilnost podataka korištenih u prvoj fazi objašnjena je korištenjem niza prediktora izvedenih iz digitalnog modela visina (DEM). Karte klimatoloških normala (višegodišnji srednjaci) izrađene su metodom prostorne interpolacije zvanom regresijski kriging (RK). Za odabir optimalne metode za prostornu interpolaciju odstupanja, testirane su četiri metode interpolacije i ocijenjene pomoću postupka poprečne validacije: multikvadratična, obični kriging (razdvojeni i skupni variogrami) i 3D kriging
    corecore