660 research outputs found

    Momentary lapse of control: A cognitive continuum approach to understanding and mitigating perseveration in human error

    Get PDF
    Everyday complex and stressful real-life situations can overwhelm the human brain to an extent that the person is no longer able to accurately evaluate the situation and persists in irrational actions or strategies. Safety analyses reveal that such perseverative behavior is exhibited by operators in many critical domains, which can lead to potentially fatal incidents. There are neuroimaging evidences of changes in healthy brain functioning when engaged in non-adaptive behaviors that are akin to executive deficits such as perseveration shown in patients with brain lesion. In this respect, we suggest a cognitive continuum whereby stressors can render the healthy brain temporarily impaired. We show that the dorsolateral prefrontal cortex is a key structure for executive and attentional control whereby any transient (stressors, neurostimulation) or permanent (lesion) impairment compromises adaptive behavior. Using this neuropsychological insight, we discuss solutions involving training, neurostimulation, and the design of cognitive countermeasures for mitigating perseveration

    Applications of Crossmodal Relationships in Interfaces for Complex Systems: A Study of Temporal Synchrony

    Get PDF
    Current multimodal interfaces for complex systems, such as those designed using the Ecological Interface Design (EID) methodology, have largely focused on effective design of interfaces that treat each sensory modality as either an independent channel of information or as a way to provide redundant information. However, there are many times when operationally related information is presented in different sensory modalities. There is very little research that has examined how this information in different modalities can be linked at a perceptual level. When related information is presented through multiple sensory modalities, interface designers will require perceptual methods for linking relevant information together across modalities. This thesis examines one possible crossmodal perceptual relationship, temporal synchrony, and evaluates whether the relationship is useful in the design of multimodal interfaces for complex systems. Two possible metrics for the evaluation of crossmodal perceptual relationships were proposed: resistance to changes in workload, and stream monitoring awareness. Two experiments were used to evaluate these metrics. The results of the first experiment showed that temporal rate synchrony was not resistant to changes in workload, manipulated through a secondary visual task. The results of the second experiment showed that participants who used crossmodal temporal rate synchrony to link information in a multimodal interface did not achieve better performance in the monitoring of the two streams of information being presented over equivalent unimodal interfaces. Taken together, these findings suggest that temporal rate synchrony may not be an effective method for linking information across modalities. Crossmodal perceptual relationships may be very different from intra-modal perceptual relationships. However, methods for linking information across sensory modalities are still an important goal for interface designers, and a key feature of future multimodal interface design for complex systems
    corecore