53,998 research outputs found

    Surface acoustic wave propagation in graphene film

    Get PDF
    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals

    Direct Visualization of Laser-Driven Focusing Shock Waves

    Full text link
    Cylindrically or spherically focusing shock waves have been of keen interest for the past several decades. In addition to fundamental study of materials under extreme conditions, cavitation, and sonoluminescence, focusing shock waves enable myriad applications including hypervelocity launchers, synthesis of new materials, production of high-temperature and high-density plasma fields, and a variety of medical therapies. Applications in controlled thermonuclear fusion and in the study of the conditions reached in laser fusion are also of current interest. Here we report on a method for direct real-time visualization and measurement of laser-driven shock generation, propagation, and 2D focusing in a sample. The 2D focusing of the shock front is the consequence of spatial shaping of the laser shock generation pulse into a ring pattern. A substantial increase of the pressure at the convergence of the acoustic shock front is observed experimentally and simulated numerically. Single-shot acquisitions using a streak camera reveal that at the convergence of the shock wave in liquid water the supersonic speed reaches Mach 6, corresponding to the multiple gigapascal pressure range 30 GPa

    Turbulent jet interaction with a long rise-time pressure signature

    Get PDF
    A sonic boom signature with a long rise time has the ability to reduce the sonic boom, but it does not necessarily minimize the sonic boom at the ground level because of the real atmospheric turbulence. In this study, an effect of the turbulence on a long rise-time pressure signature was experimentally investigated in a ballistic range facility. To compare the effects of the turbulence on the long and short rise-time pressure signatures, a cone-cylinder projectile that simultaneously produces these pressure signatures was designed. The pressure waves interacted with a turbulent field generated by a circular nozzle. The turbulence effects were evaluated using flow diagnostic techniques: high-speed schlieren photography, a point-diffraction interferometer, and a pressure measurement. In spite of the fact that the long and short rise-time pressure signatures simultaneously travel through the turbulent field, the turbulence effects do not give the same contribution to these overpressures. Regarding the long rise-time pressure signature, the overpressure fluctuation due to the turbulence interaction is almost uniform, and a standard deviation 1.5 times greater than that of the no-turbulence case is observed. By contrast, a short rise-time pressure signature which passed through the same turbulent field is strongly affected by the turbulence. A standard deviation increases by a factor of 14 because of the turbulence interaction. Additionally, there is a non-correlation between the overpressure fluctuations of the long and short rise-time pressure signatures. These results deduce that the length of the rise time is important to the turbulence effects such as the shock focusing/diffracting

    Visualizing the Doppler Effect

    Full text link
    The development of Information and Communication Technologies suggests some spectacular changes in the methods used for teaching scientific subjects. Nowadays, the development of software and hardware makes it possible to simulate processes as close to reality as we want. However, when we are trying to explain some complex physical processes, it is better to simplify the problem under study using simplified pictures of the total process by eliminating some elements that make it difficult to understand this process. In this work we focus our attention on the Doppler effect which requires the space-time visualization that is very difficult to obtain using the traditional teaching resources. We have designed digital simulations as a complement of the theoretical explanation in order to help students understand this phenomenon.Comment: 16 pages, 8 figure

    Non-diffracting chirped Bessel waves in optical antiguides

    Full text link
    Chirped Bessel waves are introduced as stable (non-diffracting) solutions of the paraxial wave equation in optical antiguides with a power-law radial variation in their index of refraction. Through numerical simulations, we investigate the propagation of apodized (finite-energy) versions of such waves, with or without vorticity, in antiguides with practical parameters. The new waves exhibit a remarkable resistance against the defocusing effect of the unstable index potentials, outperforming standard Gaussians with the same full width at half maximum. The chirped profile persists even under conditions of eccentric launching or antiguide bending and is also capable of self-healing like standard diffraction-free beams in free space.Comment: 21 pages, 9 figure

    Comparative analysis of ferroelectric domain statistics via nonlinear diffraction in random nonlinear materials

    Get PDF
    © 2018 [Optical Society of America]. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.Peer ReviewedPostprint (published version
    corecore