9,758 research outputs found

    Markov mezƑk a kĂ©pmodellezĂ©sben, alkalmazĂĄsuk az automatikus kĂ©pszegmentĂĄlĂĄs terĂŒletĂ©n = Markovian Image Models: Applications in Unsupervised Image Segmentation

    Get PDF
    1) KifejlesztettĂŒnk egy olyan szĂ­n Ă©s textĂșra alapĂș szegmentĂĄlĂł MRF algoritmust, amely alkalmas egy kĂ©p automatikus szegmentĂĄlĂĄsĂĄt elvĂ©gezni. Az eredmĂ©nyeinket az Image and Vision Computing folyĂłiratban publikĂĄltuk. 2) KifejlesztettĂŒnk egy Reversible Jump Markov Chain Monte Carlo technikĂĄn alapulĂł automatikus kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, melyet sikeresen alkalmaztunk szĂ­nes kĂ©pek teljesen automatikus szegmentĂĄlĂĄsĂĄra. Az eredmĂ©nyeinket a BMVC 2004 konferenciĂĄn Ă©s az Image and Vision Computing folyĂłiratban publikĂĄltuk. 3) A modell többrĂ©tegƱ tovĂĄbbfejlesztĂ©sĂ©t alkalmaztuk video objektumok szĂ­n Ă©s mozgĂĄs alapĂș szegmentĂĄlĂĄsĂĄra, melynek eredmĂ©nyeit a HACIPPR 2005 illetve az ACCV 2006 nemzetközi konferenciĂĄkon publikĂĄltuk. SzintĂ©n ehhez az alapproblĂ©mĂĄhoz kapcsolĂłdik HorvĂĄth PĂ©ter hallgatĂłmmal az optic flow szamĂ­tĂĄsĂĄval illetve szĂ­n, textĂșra Ă©s mozgĂĄs alapĂș GVF aktĂ­v kontĂșrral kapcsoltos munkĂĄink. TDK dolgozata elsƑ helyezĂ©st Ă©rt el a 2004-es helyi versenyen, az eredmĂ©nyeinket pedig a KEPAF 2004 konferenciĂĄn publikĂĄltuk. 4) HorvĂĄth PĂ©ter PhD hallgatĂłmmal illetve az franciaorszĂĄgi INRIA Ariana csoportjĂĄval, kidolgoztunk egy olyan kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, amely a szegmentĂĄlandĂł objektum alakjĂĄt is figyelembe veszi. Az eredmĂ©nyeinket az ICPR 2006 illetve az ICCVGIP 2006 konferenciĂĄn foglaltuk össze. A modell elƑzmĂ©nyekĂ©nt kidolgoztunk tovĂĄbbĂĄ egy alakzat-momemntumokon alapulĂł aktĂ­v kontĂșr modellt, amelyet a HACIPPR 2005 konferenciĂĄn publikĂĄltunk. | 1) We have proposed a monogrid MRF model which is able to combine color and texture features in order to improve the quality of segmentation results. We have also solved the estimation of model parameters. This work has been published in the Image and Vision Computing journal. 2) We have proposed an RJMCMC sampling method which is able to identify multi-dimensional Gaussian mixtures. Using this technique, we have developed a fully automatic color image segmentation algorithm. Our results have been published at BMVC 2004 international conference and in the Image and Vision Computing journal. 3) A new multilayer MRF model has been proposed which is able to segment an image based on multiple cues (such as color, texture, or motion). This work has been published at HACIPPR 2005 and ACCV 2006 international conferences. The work on optic flow computation and color-, texture-, and motion-based GVF active contours doen with my student, Mr. Peter Horvath, won a first price at the local Student Research Competition in 2004. Results have been presented at KEPAF 2004 conference. 4) A new shape prior, called 'gas of circles' has been introduced using active contour models. This work is done in collaboration with the Ariana group of INRIA, France and my PhD student, Mr. Peter Horvath. Results are published at the ICPR 2006 and ICCVGIP 2006 conferences. A preliminary study on active contour models using shape-moments has also been done, these results are published at HACIPPR 2005

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    Segmenting Foreground Objects from a Dynamic Textured Background via a Robust Kalman Filter

    Full text link
    The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio
    • 

    corecore