26 research outputs found

    Smart filterless optical networks based on optical spectrum analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Dynamic network operations can produce power fluctuations of the established connections in filterless optical networks. In addition, the gridless nature of filterless networks make that some (un)intentional effects such as transponders laser drift might disrupt the proper operation of lightpaths. To overcome these issues, we present a monitoring system exploiting data analytics and cost-effective optical spectrum analyzers to achieve smart filterless network operation. Experimental measurements are used to validate the proposed data analytics-based approaches, as well as to find the optimal resolution to achieve maximum performance with minimum cost.This work was partially supported by the EC through the METRO-HAUL project (G.A. nº 761727), from the AEI/FEDER TWINS project (TEC2017-90097-R), and from the Catalan ICREA Institution.Peer ReviewedPostprint (author's final draft

    Optical signal tracking for robust PAM4 deployment in filterless metro network scenarios

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Highly accurate and reliable optical signal tracking is proposed that estimates sub-GHz laser drift failures by analyzing spectra acquired by cost-effective coarse-granular OSAs. Its application on PAM4 systems in filterless metro networks brings added robustness.Peer ReviewedPostprint (author's final draft

    Exploiting optical signal analysis for autonomous communications

    Get PDF
    (English) Optical communications have been extensively investigated and enhanced in the last decades. Nowadays, they are responsible to transport all the data traffic generated around the world, from access to the core network segments. As the data traffic is increasing and changing in both type and patterns, the optical communications networks and systems need to readapt and continuous advances to face the future data traffic demands in an efficient and cost-effective way. This PhD thesis focuses on investigate and analyze the optical signals in order to extract useful knowledge from them to support the autonomous lightpath operation, as well as to lightpath characterization. The first objective of this PhD thesis is to investigate the optical transmission feasibility of optical signals based on high-order modulation formats (MF) and high symbol rates (SR) in hybrid filterless, filtered and flexible optical networks. It is expected a higher physical layer impairments impact on these kinds of optical signals that can lead to degradation of the quality of transmission. In particular, the impact of the optical filter narrowing arising from the node cascade is evaluated. The obtained simulation results for the required optical-signal-to-noise ratio in a cascade up to 10 optical nodes foresee the applicability of these kinds of optical signals in such scenarios. By using high-order MF and high SR, the number of the optical transponders cab be reduced, as well as the spectral efficiency is enhanced. The second objective focuses on MF and SR identification at the optical receiver side to support the autonomous lightpath operation. Nowadays, optical transmitters can generate several optical signal configurations in terms of MF and SR. To increase the autonomous operation of the optical receiver, it is desired it can autonomously recognize the MF and SR of the incoming optical signals. In this PhD thesis, we propose an accurate and low complex MF and SR identification algorithm based on optical signal analysis and minimum Euclidean distance to the expected points when the received signals are decoded with several available MF and SR. The extensive simulation results show remarkable accuracy under several realistic lightpath scenarios, based on different fiber types, including linear and nonlinear noise interference, as well as in single and multicarrier optical systems. The final objective of this PhD thesis is the deployment of a machine learning-based digital twin for optical constellations analysis and modeling. An optical signal along its lightpath in the optical network is impaired by several effects. These effects can be linear, e.g., the noise coming from the optical amplification, or nonlinear ones, e.g., the Kerr effects from the fiber propagation. The optical constellations are a good source of information regarding these effects, both linear and nonlinear. Thus, by an accurate and deep analysis of the received optical signals, visualized in optical constellations, we can extract useful information from them to better understand the several impacts along the crossed lightpath. Furthermore, by learning the different impacts from different optical network elements on the optical signal, we can accurately model it in order to create a partial digital twin of the optical physical layer. The proposed digital twin shows accurate results in modeled lightpaths including both linear and nonlinear interference noise, in several lightpaths configuration, i.e., based on different kind of optical links, optical powers and optical fiber parameters. In addition, the proposed digital twin can be useful to predict quality of transmission metrics, such as bit error rate, in typical lightpath scenarios, as well as to detect possible misconfigurations in optical network elements by cooperation with the software-defined networking controller and monitoring and data analytics agents.(Español) Las comunicaciones ópticas han sido ampliamente investigadas y mejoradas en las últimas décadas. En la actualidad, son las encargadas de transportar la mayoría del tráfico de datos que se genera en todo el mundo, desde el acceso hasta los segmentos de la red troncal. A medida que el tráfico de datos aumenta y cambia tanto en tipo como en patrones, las redes y los sistemas de comunicaciones ópticas necesitan readaptarse y avanzar continuamente para, de una manera eficiente y rentable, hacer frente a las futuras demandas de tráfico de datos. Esta tesis doctoral se centra en investigar y analizar las señales ópticas con el fin de extraer de ellas conocimiento útil para apoyar el funcionamiento autónomo de las conexiones ópticas, así como para su caracterización. El primer objetivo de esta tesis doctoral es investigar la viabilidad de transmisión de señales ópticas basadas en formatos de modulación de alto orden y altas tasas de símbolos en redes ópticas híbridas con y sin filtros. Se espera un mayor impacto de las degradaciones de la capa física en este tipo de señales ópticas que pueden conducir a la degradación de la calidad de transmisión. En particular, se evalúa el impacto de la reducción del ancho de banda del filtro óptico que surge tras atravesar una cascada de nodos. Los resultados de simulación obtenidos para la relación señal óptica/ruido requerida en una cascada de hasta 10 nodos ópticos prevén la aplicabilidad de este tipo de señales ópticas en tales escenarios. Mediante el uso de modulación de alto orden y altas tasas de símbolos, se reduce el número de transpondedores ópticos y se mejora la eficiencia espectral. El segundo objetivo se centra en la identificación de formatos de modulación y tasas de símbolos en el lado del receptor óptico para respaldar la operación autónoma de la conexión óptica. Para aumentar el funcionamiento autónomo del receptor óptico, se desea que pueda reconocer de forma autónoma la configuración de las señales ópticas entrantes. En esta tesis doctoral, proponemos un algoritmo de identificación de formatos de modulación y tasas de símbolos preciso y de baja complejidad basado en el análisis de señales ópticas cuando las señales recibidas se decodifican con varios formatos de modulación y tasas de símbolos disponibles. Los extensos resultados de la simulación muestran una precisión notable en varios escenarios realistas, basados en diferentes tipos de fibra, incluida la interferencia de ruido lineal y no lineal, así como en sistemas ópticos de portadora única y múltiple. El objetivo final de esta tesis doctoral es el despliegue de un gemelo digital basado en aprendizaje automático para el análisis y modelado de constelaciones ópticas. Una señal óptica a lo largo de su trayectoria en la red óptica se ve afectada por varios efectos, pueden ser lineales o no lineales. Las constelaciones ópticas son una buena fuente de información sobre estos efectos, tanto lineales como no lineales. Por lo tanto, mediante un análisis preciso y profundo de las señales ópticas recibidas, visualizadas en constelaciones ópticas, podemos extraer información útil de ellas para comprender mejor los diversos impactos a lo largo del camino propagado. Además, al aprender los diferentes impactos de los diferentes elementos de la red óptica en la señal óptica, podemos modelarla con precisión para crear un gemelo digital parcial de la camada física óptica. El gemelo digital propuesto muestra resultados precisos en conexiones que incluyen ruido de interferencia tanto lineal como no lineal, en varias configuraciones basados en diferentes tipos de enlaces ópticos, potencias ópticas y parámetros de fibra óptica. Además, el gemelo digital propuesto puede ser útil para predecir la calidad de las métricas de transmisión así como para detectar posibles errores de configuración en los elementos de la red óptica mediante la cooperación con el controlador de red, el monitoreo y agentes de análisis de datosPostprint (published version

    Demonstration of latency-aware 5G network slicing on optical metro networks

    Get PDF
    The H2020 METRO-HAUL European project has architected a latency-aware, cost-effective, agile, and programmable optical metro network. This includes the design of semi-disaggregated metro nodes with compute and storage capabilities, which interface effectively with both 5G access and multi-Tbit/s elastic optical networks in the core. In this paper, we report the automated deployment of 5G services, in particular, a public safety video surveillance use case employing low-latency object detection and tracking using on-camera and on-the-edge analytics. The demonstration features flexible deployment of network slice instances, implemented in terms of ETSI NFV Network Services. We summarize the key findings in a detailed analysis of end-to-end quality of service, service setup time, and soft-failure detection time. The results show that the round-trip-time over an 80 km link is under 800 µs and the service deployment time under 180 seconds.Horizon 2020 Framework Programme (761727); Bundesministerium für Bildung und Forschung (16KIS0979K).Peer ReviewedArticle signat per 25 autors/es: B. Shariati, Fraunhofer HHI, Berlin, Germany / L. Velasco, Universitat Politècnica de Catalunya, Barcelona, Spain / J.-J. Pedreno-Manresa, ADVA, Munich, Germany / A. Dochhan, ADVA, Munich, Germany / R. Casellas, Centre Tecnològic Telecomunicacions Catalunya, Castelldefels, Spain / A. Muqaddas, University of Bristol, Bristol, UK / O. Gonzalez de Dios, Telefónica, Madrid, Spain / L. Luque Canto, Telefónica, Madrid, Spain / B. Lent, Qognify GmbH, Bruchsal, Germany / J. E. Lopez de Vergara, Naudit HPCN, Madrid, Spain / S. Lopez-Buedo, Naudit HPCN, Madrid, Spain / F. Moreno, Universidad Politécnica de Cartagena, Cartagena, Spain / P. Pavon, Universidad Politécnica de Cartagena, Cartagena, Spain / M. Ruiz, Universitat Politècnica de Catalunya, Barcelona, Spain / S. K. Patri, ADVA, Munich, Germany / A. Giorgetti, CNIT, Pisa, Italy / F. Cugini, CNIT, Pisa, Italy / A. Sgambelluri, CNIT, Pisa, Italy / R. Nejabati, University of Bristol, Bristol, UK / D. Simeonidou, University of Bristol, Bristol, UK / R.-P. Braun, Deutsche Telekom, Germany / A. Autenrieth, ADVA, Munich, Germany / J.-P. Elbers, ADVA, Munich, Germany / J. K. Fischer, Fraunhofer HHI, Berlin, Germany / R. Freund, Fraunhofer HHI, Berlin, GermanyPostprint (author's final draft

    Development of a microfluidic device for gaseous formaldehyde sensing = Développement d\u27un dispositif microfluidique pour la détection de formaldéhyde à l\u27état gazeux

    Get PDF
    Formaldehyd (HCHO) ist eine chemische Verbindung, die bei der Herstellung einer großen Zahl von Haushaltsprodukten verwendet wird.Charakteristisch ist seine hohe Flüchtigkeit aufgrund einer niedrigen Siedetemperatur (T=19 ℃T = - 19\ ℃). Daher ist HCOH fast überall als Luftschadstoff in Innenräumen vorhanden. Die Miniaturisierung analytischer Systeme zu Handheld-Gerät hat das Potenzial, nicht nur effizientere, sondern auch empfindlichere Instrumente für die Echtzeitüberwachung dieses gefährlichen Luftschadstoffs zu ermöglichen. Die vorliegende Doktorarbeit präsentiert die Entwicklung eines Mikrofluidik-Geräts für die Erfassung von HCHO basierend auf der Hantzsch-Reaktion.Hierbei wurde der Schwerpunkt auf die Komponente für Fluoreszenzdetektion gelegt. Es wurde eine umfangreiche Literaturrecherche durchgeführt, die es erlaubt, den Stand der Technik auf dem Gebiet der Miniaturisierung des Fluoreszenzsensors zusammenzufassen. Auf Grund dieser Studie wurde ein modulares Fluoreszenzdetektionskonzept vorgeschlagen, das um einen CMOS-Bildsensor (CIS) herum entwickelt wurde. Zwei dreischichtige Fluidikzellenkonfigurationen (Konfiguration 1: Quarz - SU-8 3050 - Quarz und Konfiguration 2: Silizium - SU-8 3050 - Quarz) wurden in Betracht gezogen und parallel unter den gleichen experimentellen Bedingungen getestet. Die Verfahren der Mikrofabrikation der fluidischen Zellen wurden detailliert beschrieben, einschließlich des Integrationsprozesses der Standardkomponenten und der experimentellen Verfahren. Der CIS-basierte Fluoreszenzdetektor bewies seine Leistungsfähigkeit, eine anfängliche HCHO-Konzentration von 10 µg/L vollständig in 3,5-Diacetyl-1,4-dihydrolutidin (DDL- derivatisiert) sowohl für die Quarz- als auch für die Silizium-Fluidikzellen zu detektieren. Beide Systemewiesenein Abfragevolumen von 3,5 µL auf. Ein offensichtlich höheres Signal-Rausch-Verhältnis (SNR) wurde für die Silizium-Fluidzelle (SNRsilicon=6.1\text{SNR}_{\text{silicon}} = 6.1) im Vergleich zur Quarz-Fluidzelle (SNRquartz=4.9\text{SNR}_{\text{quartz}} = 4.9) beobachtet. Die Verstärkung der Signalintensität in der Silizium-Fluidzelle ist wahrscheinlich auf den Silizium-Absorptionskoeffizienten bei der Anregungswellenlänge zurückzuführen,a(λabs=420 nm)=5104cm1a\left( \lambda_{\text{abs}} = 420\ nm \right) = 5 \bullet 10^{4}\text{cm}^{- 1}. Dieser Koeffizient ist ungefähr fünfmal höher als der Absorptionskoeffizient bei der Fluoreszenzemissionswellenlänge a(λem=515 nm)=9.25103cm1a\left(\lambda_{\text{em}} = 515\ nm \right) = 9.25 \bullet 10^{3}\text{cm}^{- 1}. HCHO wird aufgrund seiner relativ hohen Konstanten für das Henry-Gesetz sehr schnell in ein flüssiges Reagenz aufgenommen. Somit hängt die Auswahl des molekularen Einfangverfahrens (Schwallströmung, Ringströmung oder membranbasierte Strömungswechselwirkung) von derLeistungsfähigkeit des Fluoreszenzdetektors ab. Ein vorläufiges Konzept, das auf der Verwendung einer Gas-Flüssigkeitsmembran-basierten Wechselwirkung zum ständigen Abfangen des gasförmigen HCHO basiert, wurde eingeführt. Hierzu wurden kompatible Materialien und Herstellungsmethoden identifiziert. Darüber hinaus wurden CFD-Simulationen durchgeführt, um die Mikrokanallänge unter verschiedenen hydrodynamischen Bedingungen abzuschätzen, die für eine vollständige HCHO-Derivatisierung erforderlich sind. Eine Verbesserung und Vereinfachung auf der Grundlage von sehrnempfindlichen Fluoreszenzdetektoren mit niedrigen Detektionsgrenzen könnte zukünftig basierend z. B. auf Schwallströmung oder Ringströmung möglich sein

    Exploring Perovskite Photodiodes:Device Physics and Applications

    Get PDF

    Autonomous and reliable operation of multilayer optical networks

    Get PDF
    This Ph.D. thesis focuses on the reliable autonomous operation of multilayer optical networks. The first objective focuses on the reliability of the optical network and proposes methods for health analysis related to Quality of Transmission (QoT) degradation. Such degradation is produced by soft-failures in optical devices and fibers in core and metro segments of the operators’ transport networks. Here, we compare estimated and measured QoT in the optical transponder by using a QoT tool based on GNPy. We show that the changes in the values of input parameters of the QoT model representing optical devices can explain the deviations and degradation in performance of such devices. We use reverse engineering to estimate the value of those parameters that explain the observed QoT. We show by simulation a large anticipation in soft-failure detection, localization and identification of degradation before affecting the network. Finally, for validating our approach, we experimentally observe the high accuracy in the estimation of the modeling parameters. The second objective focuses on multilayer optical networks, where lightpaths are used to connect packet nodes thus creating virtual links (vLink). Specifically, we study how lightpaths can be managed to provide enough capacity to the packet layer without detrimental effects in their Quality of Service (QoS), like added delays or packet losses, and at the same time minimize energy consumption. Such management must be as autonomous as possible to minimize human intervention. We study the autonomous operation of optical connections based on digital subcarrier multiplexing (DSCM). We propose several solutions for the autonomous operation of DSCM systems. In particular, the combination of two modules running in the optical node and in the optical transponder activate and deactivate subcarriers to adapt the capacity of the optical connection to the upper layer packet traffic. The module running in the optical node is part of our Intent-based Networking (IBN) solution and implements prediction to anticipate traffic changes. Our comprehensive study demonstrates the feasibility of DSCM autonomous operation and shows large cost savings in terms of energy consumption. In addition, our study provides a guideline to help vendors and operators to adopt the proposed solutions. The final objective targets at automating packet layer connections (PkC). Automating the capacity required by PkCs can bring further cost reduction to network operators, as it can limit the resources used at the optical layer. However, such automation requires careful design to avoid any QoS degradation, which would impact Service Level Agreement (SLA) in the case that the packet flow is related to some customer connection. We study autonomous packet flow capacity management. We apply RL techniques and propose a management lifecycle consisting of three different phases: 1) a self-tuned threshold-based approach for setting up the connection until enough data is collected, which enables understanding the traffic characteristics; 2) RL operation based on models pre-trained with generic traffic profiles; and 3) RL operation based on models trained with the observed traffic. We show that RL algorithms provide poor performance until they learn optimal policies, as well as when the traffic characteristics change over time. The proposed lifecycle provides remarkable performance from the starting of the connection and it shows the robustness while facing changes in traffic. The contribution is twofold: 1) and on the one hand, we propose a solution based on RL, which shows superior performance with respect to the solution based on prediction; and 2) because vLinks support packet connections, coordination between the intents of both layers is proposed. In this case, the actions taken by the individual PkCs are used by the vLink intent. The results show noticeable performance compared to independent vLink operation.Esta tesis doctoral se centra en la operación autónoma y confiable de redes ópticas multicapa. El primer objetivo se centra en la fiabilidad de la red óptica y propone métodos para el análisis del estado relacionados con la degradación de la calidad de la transmisión (QoT). Dicha degradación se produce por fallos en dispositivos ópticos y fibras en las redes de transporte de los operadores que no causan el corte de la señal. Comparamos el QoT estimado y medido en el transpondedor óptico mediante el uso de una herramienta de QoT basada en GNPy. Mostramos que los cambios en los valores de los parámetros de entrada del modelo QoT que representan los dispositivos ópticos pueden explicar las desviaciones y la degradación en el rendimiento de dichos dispositivos. Usamos ingeniería inversa para estimar el valor de aquellos parámetros que explican el QoT observado. Mostramos, mediante simulación, una gran anticipación en la detección, localización e identificación de fallas leves antes de afectar la red. Finalmente, validamos nuestro método de forma experimental y comprobamos la alta precisión en la estimación de los parámetros de los modelos. El segundo objetivo se centra en las redes ópticas multicapa, donde se utilizan conexiones ópticas (lightpaths) para conectar nodos de paquetes creando así enlaces virtuales (vLink). Específicamente, estudiamos cómo se pueden gestionar los lightpaths para proporcionar suficiente capacidad a la capa de paquetes sin efectos perjudiciales en su calidad de servicio (QoS), como retrasos adicionales o pérdidas de paquetes, y al mismo tiempo minimizar el consumo de energía. Estudiamos el funcionamiento autónomo de conexiones ópticas basadas en multiplexación de subportadoras digitales (DSCM) y proponemos soluciones para su funcionamiento autónomo. En particular, la combinación de dos módulos que se ejecutan en el nodo óptico y en el transpondedor óptico activan y desactivan subportadoras para adaptar la capacidad de la conexión óptica al tráfico de paquetes. El módulo que se ejecuta en el nodo óptico implementa la predicción para anticipar los cambios de tráfico. Nuestro estudio demuestra la viabilidad de la operación autónoma de DSCM y muestra un gran ahorro de consumo de energía. El objetivo final es la automatización de conexiones de capa de paquete (PkC). La automatización de la capacidad requerida por las PkC puede generar una mayor reducción de costes, ya que puede limitar los recursos utilizados en la capa óptica. Sin embargo, dicha automatización requiere un diseño cuidadoso para evitar cualquier degradación de QoS, lo que afectaría acuerdos de nivel de servicio (SLA) en el caso de que el flujo de paquetes esté relacionado con alguna conexión del cliente. Estudiamos la gestión autónoma de la capacidad del flujo de paquetes. Aplicamos RL y proponemos un ciclo de vida de gestión con tres fases: 1) un enfoque basado en umbrales auto ajustados para configurar la conexión hasta que se recopilen suficientes datos, lo que permite comprender las características del tráfico; 2) operación RL basada en modelos pre-entrenados con perfiles de tráfico genéricos; y 3) operación de RL en base a modelos entrenados con el tránsito observado. Mostramos que los algoritmos de RL ofrecen un desempeño deficiente hasta que aprenden las políticas óptimas, así cuando las características del tráfico cambian con el tiempo. El ciclo de vida propuesto proporciona un rendimiento notable desde el inicio de la conexión y muestra la robustez frente a cambios en el tráfico. La contribución es doble: 1) proponemos una solución basada en RL que muestra un rendimiento superior que la solución basada en predicción; y 2) debido a que los vLinks admiten conexiones de paquetes, se propone la coordinación entre las intenciones de ambas capas. En este caso, la intención de vLink utiliza las acciones realizadas por los PkC individuales. Los resultados muestran un rendimiento notable en comparación con la operación independiente de vLink.Postprint (published version

    Design, monitoring and performance evaluation of high capacity optical networks

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICInternet traffic is expected to keep increasing exponentially due to the emergence of a vast number of innovative online services and applications. Optical networks, which are the cornerstone of the underlying Internet infrastructure, have been continuously evolving to carry the ever-increasing traffic in a more flexible, cost-effective, and intelligent way. Having these three targets in mind, this PhD thesis focuses on two general areas for the performance improvement and the evolution of optical networks: i) introducing further cognition to the optical layer, and ii) introducing new networking solutions revolutionizing the optical transport infrastructure. In the first part, we present novel failure detection and identification solutions in the optical layer utilizing the optical spectrum traces captured by cost-effective coarse-granular Optical Spectrum Analyzers (OSA). We demonstrate the effectiveness of the developed solutions for detecting and identifying filter-related failures in the context of Spectrum-Switched Optical Networks (SSON), as well as transmitter-related laser failures in Filter-less Optical Networks (FON). In addition, at the subsystem level we propose an Autonomic Transmission Agent (ATA), which triggers local or remote transceiver reconfiguration by predicting Bit-Error-Rate (BER) degradation by monitoring State-of-Polarization (SOP) data obtained by coherent receivers. I have developed solutions to push further the performance of the currently deployed optical networks through reducing the margins and introducing intelligence to better manage their resources. However, it is expected that the spectral efficiency of the current standard Single-Mode Fiber (SMF) based optical network approaches the Shannon capacity limits in the near future, and therefore, a new paradigm is required to keep with the pace of the current huge traffic increase. In this regard, Space Division Multiplexing (SDM) is proposed as the ultimate solution to address the looming capacity crunch with a reduced cost-per-bit delivered to the end-users. I devote the second part of this thesis to investigate different flavors of SDM based optical networks with the aim of finding the best compromise for the realization of a spectrally and spatially flexible optical network. SDM-based optical networks can be deployed over various types of transmission media. Additionally, due to the extra dimension (i.e., space) introduced in SDM networks, optical switching nodes can support wavelength granularity, space granularity, or a combination of both. In this thesis, we evaluate the impact of various spectral and spatial switching granularities on the performance of SDM-based optical networks serving different profiles of traffic with the aim of understanding the impact of switching constraints on the overall network performance. In this regard, we consider two different generations of wavelength selective switches (WSS) to reflect the technology limitations on the performance of SDM networks. In addition, we present different designs of colorless direction-less, and Colorless Directionless Contention-less (CDC) Reconfigurable Optical Add/Drop Multiplexers (ROADM) realizing SDM switching schemes and compare their performance in terms of complexity and implementation cost. Furthermore, with the aim of revealing the benefits and drawbacks of SDM networks over different types of transmission media, we preset a QoT-aware network planning toolbox and perform comparative performance analysis among SDM network based on various types of transmission media. We also analyze the power consumption of Multiple-Input Multiple-Output (MIMO) Digital Signal Processing (DSP) units of transceivers operating over three different types of transmission media. The results obtained in the second part of the thesis provide a comprehensive outlook to different realizations of SDM-based optical networks and showcases the benefits and drawbacks of different SDM realizations.Se espera que el tráfico de Internet siga aumentando exponencialmente debido a la continua aparición de gran cantidad de aplicaciones innovadoras. Las redes ópticas, que son la piedra angular de la infraestructura de Internet, han evolucionado continuamente para transportar el tráfico cada vez mayor de una manera más flexible, rentable e inteligente. Teniendo en cuenta estos tres objetivos, esta tesis doctoral se centra en dos áreas cruciales para la mejora del rendimiento y la evolución de las redes ópticas: i) introducción de funcionalidades cognitivas en la capa óptica, y ii) introducción de nuevas estructuras de red que revolucionarán el transporte óptico. En la primera parte, se presentan soluciones novedosas de detección e identificación de fallos en la capa óptica que utilizan trazas de espectro óptico obtenidas mediante analizadores de espectros ópticos (OSA) de baja resolución (y por tanto de coste reducido). Se demuestra la efectividad de las soluciones desarrolladas para detectar e identificar fallos derivados del filtrado imperfecto en las redes ópticas de conmutación de espectro (SSON), así como fallos relacionados con el láser transmisor en redes ópticas sin filtro (FON). Además, a nivel de subsistema, se propone un Agente de Transmisión Autónomo (ATA), que activa la reconfiguración del transceptor local o remoto al predecir la degradación de la Tasa de Error por Bits (BER), monitorizando el Estado de Polarización (SOP) de la señal recibida en un receptor coherente. Se han desarrollado soluciones para incrementar el rendimiento de las redes ópticas mediante la reducción de los márgenes y la introducción de inteligencia en la administración de los recursos de la red. Sin embargo, se espera que la eficiencia espectral de las redes ópticas basadas en fibras monomodo (SMF) se acerque al límite de capacidad de Shannon en un futuro próximo, y por tanto, se requiere un nuevo paradigma que permita mantener el crecimiento necesario para soportar el futuro aumento del tráfico. En este sentido, se propone el Multiplexado por División Espacial (SDM) como la solución que permita la continua reducción del coste por bit transmitido ante ése esperado crecimiento del tráfico. En la segunda parte de esta tesis se investigan diferentes tipos de redes ópticas basadas en SDM con el objetivo de encontrar soluciones para la realización de redes ópticas espectral y espacialmente flexibles. Las redes ópticas basadas en SDM se pueden implementar utilizando diversos tipos de medios de transmisión. Además, debido a la dimensión adicional (el espacio) introducida en las redes SDM, los nodos de conmutación óptica pueden conmutar longitudes de onda, fibras o una combinación de ambas. Se evalúa el impacto de la conmutación espectral y espacial en el rendimiento de las redes SDM bajo diferentes perfiles de tráfico ofrecido, con el objetivo de comprender el impacto de las restricciones de conmutación en el rendimiento de la red. En este sentido, se consideran dos generaciones diferentes de conmutadores selectivos de longitud de onda (WSS) para reflejar las limitaciones de la tecnología en el rendimiento de las redes SDM. Además, se presentan diferentes diseños de ROADM, independientes de la longitud de onda, de la dirección, y sin contención (CDC) utilizados para la conmutación SDM, y se compara su rendimiento en términos de complejidad y coste. Además, con el objetivo de cuantificar los beneficios e inconvenientes de las redes SDM, se ha generado una herramienta de planificación de red que prevé la QoT usando diferentes tipos de fibras. También se analiza el consumo de energía de las unidades DSP de los transceptores MIMO operando en redes SDM con tres tipos diferentes de medios de transmisión. Los resultados obtenidos en esta segunda parte de la tesis proporcionan una perspectiva integral de las redes SDM y muestran los beneficios e inconvenientes de sus diferentes implementacionesAward-winningPostprint (published version

    Exploring Perovskite Photodiodes:Device Physics and Applications

    Get PDF
    corecore