394 research outputs found

    REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild

    Full text link
    In recent years, significant attention has been devoted towards integrating deep learning technologies in the healthcare domain. However, to safely and practically deploy deep learning models for home health monitoring, two significant challenges must be addressed: the models should be (1) robust against noise; and (2) compact and energy-efficient. We propose REST, a new method that simultaneously tackles both issues via 1) adversarial training and controlling the Lipschitz constant of the neural network through spectral regularization while 2) enabling neural network compression through sparsity regularization. We demonstrate that REST produces highly-robust and efficient models that substantially outperform the original full-sized models in the presence of noise. For the sleep staging task over single-channel electroencephalogram (EEG), the REST model achieves a macro-F1 score of 0.67 vs. 0.39 achieved by a state-of-the-art model in the presence of Gaussian noise while obtaining 19x parameter reduction and 15x MFLOPS reduction on two large, real-world EEG datasets. By deploying these models to an Android application on a smartphone, we quantitatively observe that REST allows models to achieve up to 17x energy reduction and 9x faster inference. We open-source the code repository with this paper: https://github.com/duggalrahul/REST.Comment: Accepted to WWW 202

    Validation of a Single Channel EEG for the Athlete: A Machine Learning Protocol to Accurately Detect Sleep Stages

    Get PDF
    There is a large and growing movement towards the use of wearable technologies for sleep assessment. This trend is largely due to the desire for comfortable, burden free, and inexpensive technology. In tandem, given the competitive nature of professional athletes enduring high training load, sleep is often jeopardized which can result in adverse outcomes. Wearable devices hold the promise of increasing the ease of monitoring sleep in athletes which can inform health and recovery status, as well as aid performance optimization. However, wearable devices typically lack sufficient validity to assess sleep – and especially sleep stages. To address this concern, the present study aimed to validate an algorithm to detect wakefulness, light sleep, deep sleep, and REM sleep against the gold standard polysomnography (PSG), using a wearable single channel electroencephalogram (EEG). Through the single channel EEG, machine learning models were built to infer sleep staging. The model was created from training and validating EEG output and labels assigned from the PSG software. Additionally, to determine the accuracy of agreement between the devices both Random Forest and a deep learning Convolutional Neural network model were implemented. The sleep staging output was consistent with our sleep staging algorithm for the single channel EEG and more notably, the sleep versus wake agreement was strong- above 80%. Our findings show that machine learning algorithms can be used with wearable devices to accurately detect, not only the sleep versus wake cycles, but the 4 sleep stages as well. Accordingly, this technology can be applied in an athlete population for accurate assessment of full sleep architecture

    From unsupervised to semi-supervised adversarial domain adaptation in EEG-based sleep staging.

    Get PDF
    OBJECTIVE: The recent breakthrough of wearable sleep monitoring devices results in large amounts of sleep data. However, as limited labels are available, interpreting these data requires automated sleep stage classification methods with a small need for labeled training data. Transfer learning and domain adaptation offer possible solutions by enabling models to learn on a source dataset and adapt to a target dataset. APPROACH: In this paper, we investigate adversarial domain adaptation applied to real use cases with wearable sleep datasets acquired from diseased patient populations. Different practical aspects of the adversarial domain adaptation framework \hl{are examined}, including the added value of (pseudo-)labels from the target dataset and the influence of domain mismatch between the source and target data. The method is also implemented for personalization to specific patients. MAIN RESULTS: The results show that adversarial domain adaptation is effective in the application of sleep staging on wearable data. When compared to a model applied on a target dataset without any adaptation, the domain adaptation method in its simplest form achieves relative gains of 7%-27% in accuracy. The performance on the target domain is further boosted by adding pseudo-labels and real target domain labels when available, and by choosing an appropriate source dataset. Furthermore, unsupervised adversarial domain adaptation can also personalize a model, improving the performance by 1%-2% compared to a non-personal model. SIGNIFICANCE: In conclusion, adversarial domain adaptation provides a flexible framework for semi-supervised and unsupervised transfer learning. This is particularly useful in sleep staging and other wearable EEG applications

    A Large-Scale Study of a Sleep Tracking and Improving Device with Closed-loop and Personalized Real-time Acoustic Stimulation

    Full text link
    Various intervention therapies ranging from pharmaceutical to hi-tech tailored solutions have been available to treat difficulty in falling asleep commonly caused by insomnia in modern life. However, current techniques largely remain ill-suited, ineffective, and unreliable due to their lack of precise real-time sleep tracking, in-time feedback on the therapies, an ability to keep people asleep during the night, and a large-scale effectiveness evaluation. Here, we introduce a novel sleep aid system, called Earable, that can continuously sense multiple head-based physiological signals and simultaneously enable closed-loop auditory stimulation to entrain brain activities in time for effective sleep promotion. We develop the system in a lightweight, comfortable, and user-friendly headband with a comprehensive set of algorithms and dedicated own-designed audio stimuli. We conducted multiple protocols from 883 sleep studies on 377 subjects (241 women, 119 men) wearing either a gold-standard device (PSG), Earable, or both concurrently. We demonstrate that our system achieves (1) a strong correlation (0.89 +/- 0.03) between the physiological signals acquired by Earable and those from the gold-standard PSG, (2) an 87.8 +/- 5.3% agreement on sleep scoring using our automatic real-time sleep staging algorithm with the consensus scored by three sleep technicians, and (3) a successful non-pharmacological stimulation alternative to effectively shorten the duration of sleep falling by 24.1 +/- 0.1 minutes. These results show that the efficacy of Earable exceeds existing techniques in intentions to promote fast falling asleep, track sleep state accurately, and achieve high social acceptance for real-time closed-loop personalized neuromodulation-based home sleep care.Comment: 33 pages, 8 figure

    Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems

    Get PDF
    Objective: Diagnosis of sleep disorders is an expensive procedure that requires performing a sleep study, known as polysomnography (PSG), in a controlled environment. This study monitors the neural, eye and muscle activity of a patient using electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals which are then scored in to different sleep stages. Home PSG is often cited as an alternative of clinical PSG to make it more accessible, however it still requires patients to use a cumbersome system with multiple recording channels that need to be precisely placed. This thesis proposes a wearable sleep staging system using a single channel of EEG. For realisation of such a system, this thesis presents novel features for REM sleep detection from EEG (normally detected using EMG/EOG), a low-complexity automatic sleep staging algorithm using a single EEG channel and its complete integrated circuit implementation. Methods: The difference between Spectral Edge Frequencies (SEF) at 95% and 50% in the 8-16 Hz frequency band is shown to have high discriminatory ability for detecting REM sleep stages. This feature, together with other spectral features from single-channel EEG are used with a set of decision trees controlled by a state machine for classification. The hardware for the complete algorithm is designed using low-power techniques and implemented on chip using 0.18μm process node technology. Results: The use of SEF features from one channel of EEG resulted in 83% of REM sleep epochs being correctly detected. The automatic sleep staging algorithm, based on contextually aware decision trees, resulted in an accuracy of up to 79% on a large dataset. Its hardware implementation, which is also the very first complete circuit level implementation of any sleep staging algorithm, resulted in an accuracy of 98.7% with great potential for use in fully wearable sleep systems.Open Acces
    • …
    corecore