92,188 research outputs found

    Fast Deep Matting for Portrait Animation on Mobile Phone

    Full text link
    Image matting plays an important role in image and video editing. However, the formulation of image matting is inherently ill-posed. Traditional methods usually employ interaction to deal with the image matting problem with trimaps and strokes, and cannot run on the mobile phone in real-time. In this paper, we propose a real-time automatic deep matting approach for mobile devices. By leveraging the densely connected blocks and the dilated convolution, a light full convolutional network is designed to predict a coarse binary mask for portrait images. And a feathering block, which is edge-preserving and matting adaptive, is further developed to learn the guided filter and transform the binary mask into alpha matte. Finally, an automatic portrait animation system based on fast deep matting is built on mobile devices, which does not need any interaction and can realize real-time matting with 15 fps. The experiments show that the proposed approach achieves comparable results with the state-of-the-art matting solvers.Comment: ACM Multimedia Conference (MM) 2017 camera-read

    Real Time Rendering of Atmospheric Scattering and Volumetric Shadows

    Get PDF
    International audienceReal time rendering of atmospheric light scattering is one of the most difficult lighting effect to achieve in computer graphics. This paper presents a new real time method which renders these effects including volumetric shadows, which provides a great performance improvement over previous methods. Using an analytical expression of the light transport equation we are able to render directly the contribution of the participating medium on any surface. The rendering of shadow planes, sorted with a spatial coherence technique, and in the same philosophy than the shadow volume algorithm will add the volumetric shadows. Realistic images can be produced in real time for usual graphic scenes and at a high level framerate for complex scenes, allowing animation of lights, objects or even participating media. The method proposed in this paper use neither precomputation depending on light positions, nor texture memory

    Towards Practical Capture of High-Fidelity Relightable Avatars

    Full text link
    In this paper, we propose a novel framework, Tracking-free Relightable Avatar (TRAvatar), for capturing and reconstructing high-fidelity 3D avatars. Compared to previous methods, TRAvatar works in a more practical and efficient setting. Specifically, TRAvatar is trained with dynamic image sequences captured in a Light Stage under varying lighting conditions, enabling realistic relighting and real-time animation for avatars in diverse scenes. Additionally, TRAvatar allows for tracking-free avatar capture and obviates the need for accurate surface tracking under varying illumination conditions. Our contributions are two-fold: First, we propose a novel network architecture that explicitly builds on and ensures the satisfaction of the linear nature of lighting. Trained on simple group light captures, TRAvatar can predict the appearance in real-time with a single forward pass, achieving high-quality relighting effects under illuminations of arbitrary environment maps. Second, we jointly optimize the facial geometry and relightable appearance from scratch based on image sequences, where the tracking is implicitly learned. This tracking-free approach brings robustness for establishing temporal correspondences between frames under different lighting conditions. Extensive qualitative and quantitative experiments demonstrate that our framework achieves superior performance for photorealistic avatar animation and relighting.Comment: Accepted to SIGGRAPH Asia 2023 (Conference); Project page: https://travatar-paper.github.io

    Shaping the Future of Animation towards Role of 3D Simulation Technology in Animation Film and Television

    Get PDF
    The application of 3D simulation technology has revolutionized the field of animation film and television art, providing new possibilities and creative opportunities for visual storytelling. This research aims to explore the various aspects of applying 3D simulation technology in animation film and television art. It examines how 3D simulation technology enhances the creation of realistic characters, environments, and special effects, contributing to immersive and captivating storytelling experiences. The research also investigates the technical aspects of integrating 3D cloud simulation technology into the animation production pipeline, including modeling, texturing, rigging, and animation techniques. This paper explores the application of these optimization algorithms in the context of cloud-based 3D environments, focusing on enhancing the efficiency and performance of 3D simulations. Black Widow and Spider Monkey Optimization can be used to optimize the placement and distribution of 3D assets in cloud storage systems, improving data access and retrieval times. The algorithms can also optimize the scheduling of rendering tasks in cloud-based rendering pipelines, leading to more efficient and cost-effective rendering processes. The integration of 3D cloud environments and optimization algorithms enables real-time optimization and adaptation of 3D simulations. This allows for dynamic adjustments of simulation parameters based on changing conditions, resulting in improved accuracy and responsiveness. Moreover, it explores the impact of 3D cloud simulation technology on the artistic process, examining how it influences the artistic vision, aesthetics, and narrative possibilities in animation film and television. The research findings highlight the advantages and challenges of using 3D simulation technology in animation, shedding light on its potential future developments and its role in shaping the future of animation film and television art

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics

    Get PDF
    This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean's surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically-based methods use Navier-Stokes Equations (NSE) to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light's interaction with the ocean surface

    Ant Tribe

    Get PDF
    Ant Tribe describes the post-80s generation university graduates who live together in poor conditions without Social security in communities around China\u27s major metropolises. They dream of a better life in big cities but struggle with low-paying jobs. These struggling elites have become the fourth weak Social group, after peasants, migrant workers and unemployed people. The reason why these college graduates are compared to ants is that they are like ants: clever, hardworking, politically weak and living in groups. The real world is always different from the ideal world of the Ant Tribe in China. They often lose their purposes in a complex society. It is more important for them to recognize the distance between the real and imaginary in order to rethink whether it is a right choice to stay in a big city and try to realize their dreams. The intention of the Ant Tribe installation is to explore the process and concept of changing between the real and fantasy. In the installation, I hope to portray the Ant Tribe phenomenon widely and deeply from an artist\u27s perspective. The most important thing for me is using my artistic practice to investigate the power of the media over the contemporary subject in order to activate the viewers to question some Social issues regarding humanity consciousness. My artwork should be thought - provoking for them. I would like to use my visual language to convey specific Social issues to inquire how far the viewers are from their dreams. I hope they think about themselves in their complex society physically and psychologically when they go through my work

    La paradoja del tiempo en animación (translation: a for animation)

    Get PDF
    Article for the first edition of Con a de animacion. An academic journal published by the Grupo de Investigacion en Animacion: Arte e industria Departamento de Dibujo, Universitat Politecnica de Valenci

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future
    • …
    corecore