303 research outputs found

    Mechanical response of a self avoiding membrane: fold collisions and the birth of conical singularities

    Full text link
    An elastic membrane that is forced to reside in a container smaller than its natural size will deform and, upon further volume reduction, eventually crumple. The crumpled state is characterized by the localization of energy in a complex network of highly deformed crescent-like regions joined by line ridges. Previous studies have focused on the onset of the crumpled state by analyzing the mechanical response and stability of a conical dislocation, while others have simulated the highly packed regime neglecting the importance of the connectivity of the membrane. Here we show, through a combination of experiments, numerical simulations, and analytic approach, that the emergence of new regions of high stretching is a generic outcome when a self avoiding membrane is subject to a severe geometrical constraint. We demonstrate that, at moderate packing fraction, interlayer interactions produce a response equivalent to the one of a thicker membrane that has the shape of the deformed one. Evidence is found that friction plays a key role stabilizing the folded structures.Comment: 10 page

    Dynamic Simulations of Elastic Rods for Medical Applications

    Get PDF
    This study deals with a detailed development of a computational model based on the Cosserat rod theory to describe the motion of elastic filaments such as threads and hair. The need for a simulation software for the act of suturing has motivated this study. The dynamic equations governing the motion of elastic rods have been solved using a finite difference scheme. The scheme is central difference in space and forward difference in time and is conditionally stable. The simulations are carried out for a cantilever beam for various force and moment inputs at its free end. The results have been validated using known analytical results. The scheme has proven to be fast enough to be used in real-time simulations

    Multilayered visuo-haptic hair simulation

    Get PDF
    Over the last fifteen years, research on hair simulation has made great advances in the domains of modeling, animation and rendering, and is now moving towards more innovative interaction modalities. The combination of visual and haptic interaction within a virtual hairstyling simulation framework represents an important concept evolving in this direction. Our visuo-haptic hair interaction framework consists of two layers which handle the response to the user's interaction at a local level (around the contact area), and at a global level (on the full hairstyle). Two distinct simulation models compute individual and collective hair behavior. Our multilayered approach can be used to efficiently address the specific requirements of haptics and vision. Haptic interaction with both models has been tested with virtual hairstyling tool

    A Generative Model of People in Clothing

    Full text link
    We present the first image-based generative model of people in clothing for the full body. We sidestep the commonly used complex graphics rendering pipeline and the need for high-quality 3D scans of dressed people. Instead, we learn generative models from a large image database. The main challenge is to cope with the high variance in human pose, shape and appearance. For this reason, pure image-based approaches have not been considered so far. We show that this challenge can be overcome by splitting the generating process in two parts. First, we learn to generate a semantic segmentation of the body and clothing. Second, we learn a conditional model on the resulting segments that creates realistic images. The full model is differentiable and can be conditioned on pose, shape or color. The result are samples of people in different clothing items and styles. The proposed model can generate entirely new people with realistic clothing. In several experiments we present encouraging results that suggest an entirely data-driven approach to people generation is possible

    An inextensible model for the robotic manipulation of textiles

    Get PDF
    We introduce a new isometric strain model for the study of the dynamics of cloth garments in a moderate stress environment, such as robotic manipulation in the neighborhood of humans. This model treats textiles as surfaces that are inextensible, admitting only isometric motions. Inextensibility is derived in a continuous setting, prior to any discretization, which gives consistency with respect to remeshing and prevents the problem of locking even with coarse meshes. The simulations of robotic manipulation using the model are compared to the actual manipulation in the real world, finding that the difference between the simulated and the real position of each point in the garment is lower than 1cm in average even when a coarse mesh is used. Aerodynamic contributions to motion are incorporated to the model through the virtual uncoupling of the inertial and gravitational mass of the garment. This approach results in an accurate, when compared to the recorded dynamics of real textiles, description of cloth motion incorporating aerodynamic effects by using only two parameters.Peer ReviewedPostprint (published version

    The sedimentation of flexible filaments

    Full text link
    The dynamics of a flexible filament sedimenting in a viscous fluid are explored analytically and numerically. Compared to the well-studied case of sedimenting rigid rods, the introduction of filament compliance is shown to cause a significant alteration in the long-time sedimentation orientation and filament geometry. A model is developed by balancing viscous, elastic, and gravitational forces in a slender-body theory for zero-Reynolds-number flows, and the filament dynamics are characterized by a dimensionless elasto-gravitation number. Filaments of both non-uniform and uniform cross-sectional thickness are considered. In the weakly flexible regime, a multiple-scale asymptotic expansion is used to obtain expressions for filament translations, rotations, and shapes. These are shown to match excellently with full numerical simulations. Furthermore, we show that trajectories of sedimenting flexible filaments, unlike their rigid counterparts, are restricted to a cloud whose envelope is determined by the elasto-gravitation number. In the highly flexible regime we show that a filament sedimenting along its long axis is susceptible to a buckling instability. A linear stability analysis provides a dispersion relation, illustrating clearly the competing effects of the compressive stress and the restoring elastic force in the buckling process. The instability travels as a wave along the filament opposite the direction of gravity as it grows and the predicted growth rates are shown to compare favorably with numerical simulations. The linear eigenmodes of the governing equation are also studied, which agree well with the finite-amplitude buckled shapes arising in simulations

    Formulation of a 4-DoF torsion/bending element for the formfinding of elastic gridshells

    Get PDF
    International audienceThe paper presents a completely novel approach to model elastic gridshells with a 4-DoF element based on recent advances in the field of hair modelling [1]. This element, based on Kirchhoff's beam theory, can account for both bending and torsion behaviours. The reduction from 6 to 4 degrees of freedom is achieved with an appropriate curve framing introduce by R. Bishop [2]. The resulting model is fast and efficient. Its accuracy has been validated on test cases. It opens new outlooks for the design of elastic gridshells
    • …
    corecore