887 research outputs found

    Perspective Preserving Solution for Quasi-Orthoscopic Video See-Through HMDs

    Get PDF
    In non-orthoscopic video see-through (VST) head-mounted displays (HMDs), depth perception through stereopsis is adversely affected by sources of spatial perception errors. Solutions for parallax-free and orthoscopic VST HMDs were considered to ensure proper space perception but at expenses of an increased bulkiness and weight. In this work, we present a hybrid video-optical see-through HMD the geometry of which explicitly violates the rigorous conditions of orthostereoscopy. For properly recovering natural stereo fusion of the scene within the personal space in a region around a predefined distance from the observer, we partially resolve the eye-camera parallax by warping the camera images through a perspective preserving homography that accounts for the geometry of the VST HMD and refers to such distance. For validating our solution; we conducted objective and subjective tests. The goal of the tests was to assess the efficacy of our solution in recovering natural depth perception in the space around said reference distance. The results obtained showed that the quasi-orthoscopic setting of the HMD; together with the perspective preserving image warping; allow the recovering of a correct perception of the relative depths. The perceived distortion of space around the reference plane proved to be not as severe as predicted by the mathematical models

    Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery

    Get PDF
    Purpose: Single-incision laparoscopic surgery decreases postoperative infections, but introduces limitations in the surgeon’s maneuverability and in the surgical field of view. This work aims at enhancing intra-operative surgical visualization by exploiting the 3D information about the surgical site. An interactive guidance system is proposed wherein the pose of preoperative tissue models is updated online. A critical process involves the intra-operative acquisition of tissue surfaces. It can be achieved using stereoscopic imaging and 3D reconstruction techniques. This work contributes to this process by proposing new methods for improved dense 3D reconstruction of soft tissues, which allows a more accurate deformation identification and facilitates the registration process. Methods: Two methods for soft tissue 3D reconstruction are proposed: Method 1 follows the traditional approach of the block matching algorithm. Method 2 performs a nonparametric modified census transform to be more robust to illumination variation. The simple linear iterative clustering (SLIC) super-pixel algorithm is exploited for disparity refinement by filling holes in the disparity images. Results: The methods were validated using two video datasets from the Hamlyn Centre, achieving an accuracy of 2.95 and 1.66 mm, respectively. A comparison with ground-truth data demonstrated the disparity refinement procedure: (1) increases the number of reconstructed points by up to 43% and (2) does not affect the accuracy of the 3D reconstructions significantly. Conclusion: Both methods give results that compare favorably with the state-of-the-art methods. The computational time constraints their applicability in real time, but can be greatly improved by using a GPU implementation

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Enhancing endoscopic navigation and polyp detection using artificial intelligence

    Get PDF
    Colorectal cancer (CRC) is one most common and deadly forms of cancer. It has a very high mortality rate if the disease advances to late stages however early diagnosis and treatment can be curative is hence essential to enhancing disease management. Colonoscopy is considered the gold standard for CRC screening and early therapeutic treatment. The effectiveness of colonoscopy is highly dependent on the operator’s skill, as a high level of hand-eye coordination is required to control the endoscope and fully examine the colon wall. Because of this, detection rates can vary between different gastroenterologists and technology have been proposed as solutions to assist disease detection and standardise detection rates. This thesis focuses on developing artificial intelligence algorithms to assist gastroenterologists during colonoscopy with the potential to ensure a baseline standard of quality in CRC screening. To achieve such assistance, the technical contributions develop deep learning methods and architectures for automated endoscopic image analysis to address both the detection of lesions in the endoscopic image and the 3D mapping of the endoluminal environment. The proposed detection models can run in real-time and assist visualization of different polyp types. Meanwhile the 3D reconstruction and mapping models developed are the basis for ensuring that the entire colon has been examined appropriately and to support quantitative measurement of polyp sizes using the image during a procedure. Results and validation studies presented within the thesis demonstrate how the developed algorithms perform on both general scenes and on clinical data. The feasibility of clinical translation is demonstrated for all of the models on endoscopic data from human participants during CRC screening examinations

    H2-Stereo: High-Speed, High-Resolution Stereoscopic Video System

    Full text link
    High-speed, high-resolution stereoscopic (H2-Stereo) video allows us to perceive dynamic 3D content at fine granularity. The acquisition of H2-Stereo video, however, remains challenging with commodity cameras. Existing spatial super-resolution or temporal frame interpolation methods provide compromised solutions that lack temporal or spatial details, respectively. To alleviate this problem, we propose a dual camera system, in which one camera captures high-spatial-resolution low-frame-rate (HSR-LFR) videos with rich spatial details, and the other captures low-spatial-resolution high-frame-rate (LSR-HFR) videos with smooth temporal details. We then devise a Learned Information Fusion network (LIFnet) that exploits the cross-camera redundancies to enhance both camera views to high spatiotemporal resolution (HSTR) for reconstructing the H2-Stereo video effectively. We utilize a disparity network to transfer spatiotemporal information across views even in large disparity scenes, based on which, we propose disparity-guided flow-based warping for LSR-HFR view and complementary warping for HSR-LFR view. A multi-scale fusion method in feature domain is proposed to minimize occlusion-induced warping ghosts and holes in HSR-LFR view. The LIFnet is trained in an end-to-end manner using our collected high-quality Stereo Video dataset from YouTube. Extensive experiments demonstrate that our model outperforms existing state-of-the-art methods for both views on synthetic data and camera-captured real data with large disparity. Ablation studies explore various aspects, including spatiotemporal resolution, camera baseline, camera desynchronization, long/short exposures and applications, of our system to fully understand its capability for potential applications
    corecore