34,160 research outputs found

    Vision-based gesture recognition system for human-computer interaction

    Get PDF
    Hand gesture recognition, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. This work intends to study and implement a solution, generic enough, able to interpret user commands, composed of a set of dynamic and static gestures, and use those solutions to build an application able to work in a realtime human-computer interaction systems. The proposed solution is composed of two modules controlled by a FSM (Finite State Machine): a real time hand tracking and feature extraction system, supported by a SVM (Support Vector Machine) model for static hand posture classification and a set of HMMs (Hidden Markov Models) for dynamic single stroke hand gesture recognition. The experimental results showed that the system works very reliably, being able to recognize the set of defined commands in real-time. The SVM model for hand posture classification, trained with the selected hand features, achieved an accuracy of 99,2%. The proposed solution as the advantage of being computationally simple to train and use, and at the same time generic enough, allowing its application in any robot/system command interface

    Vision based referee sign language recognition system for the RoboCup MSL league

    Get PDF
    In RoboCup Middle Size league (MSL) the main referee uses assisting technology, controlled by a second referee, to support him, in particular for conveying referee decisions for robot players with the help of a wireless communication system. In this paper a vision-based system is introduced, able to interpret dynamic and static gestures of the referee, thus eliminating the need for a second one. The referee's gestures are interpreted by the system and sent directly to the Referee Box, which sends the proper commands to the robots. The system is divided into four modules: a real time hand tracking and feature extraction, a SVM (Support Vector Machine) for static hand posture identification, an HMM (Hidden Markov Model) for dynamic unistroke hand gesture recognition, and a FSM (Finite State Machine) to control the various system states transitions. The experimental results showed that the system works very reliably, being able to recognize the combination of gestures and hand postures in real-time. For the hand posture recognition, with the SVM model trained with the selected features, an accuracy of 98,2% was achieved. Also, the system has many advantages over the current implemented one, like avoiding the necessity of a second referee, working on noisy environments, working on wireless jammed situations. This system is easy to implement and train and may be an inexpensive solution

    MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated Accelerometers

    Get PDF
    Human-computer interaction (HCI) and virtual reality applications pose the challenge of enabling real-time interfaces for natural interaction. Gesture recognition based on body-mounted accelerometers has been proposed as a viable solution to translate patterns of movements that are associated with user commands, thus substituting point-and-click methods or other cumbersome input devices. On the other hand, cost and power constraints make the implementation of a natural and efficient interface suitable for consumer applications a critical task. Even though several gesture recognition solutions exist, their use in HCI context has been poorly characterized. For this reason, in this paper, we consider a low-cost/low-power wearable motion tracking system based on integrated accelerometers called motion capture with accelerometers (MOCA) that we evaluated for navigation in virtual spaces. Recognition is based on a geometric algorithm that enables efficient and robust detection of rotational movements. Our objective is to demonstrate that such a low-cost and a low-power implementation is suitable for HCI applications. To this purpose, we characterized the system from both a quantitative point of view and a qualitative point of view. First, we performed static and dynamic assessment of movement recognition accuracy. Second, we evaluated the effectiveness of user experience using a 3D game application as a test bed

    A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology

    Full text link
    [EN] Research has developed various solutions in order for computers to recognize hand gestures in the context of human machine interface (HMI). The design of a successful hand gesture recognition system must address functionality and usability. The gesture recognition market has evolved from touchpads to touchless sensors, which do not need direct contact. Their application in textiles ranges from the field of medical environments to smart home applications and the automotive industry. In this paper, a textile capacitive touchless sensor has been developed by using screen-printing technology. Two different designs were developed to obtain the best configuration, obtaining good results in both cases. Finally, as a real application, a complete solution of the sensor with wireless communications is presented to be used as an interface for a mobile phone.The work presented is funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and cofounded by ERDF funding from the EU. Application No.: IMAMCI/2019/1. This work was also supported by the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER).Ferri Pascual, J.; Llinares Llopis, R.; Moreno Canton, J.; Ibáñez Civera, FJ.; Garcia-Breijo, E. (2019). A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology. Sensors. 19(23):1-32. https://doi.org/10.3390/s19235068S1321923Chakraborty, B. K., Sarma, D., Bhuyan, M. K., & MacDorman, K. F. (2017). Review of constraints on vision‐based gesture recognition for human–computer interaction. IET Computer Vision, 12(1), 3-15. doi:10.1049/iet-cvi.2017.0052Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24Rautaray, S. S. (2012). Real Time Hand Gesture Recognition System for Dynamic Applications. International Journal of UbiComp, 3(1), 21-31. doi:10.5121/iju.2012.3103Karim, R. A., Zakaria, N. F., Zulkifley, M. A., Mustafa, M. M., Sagap, I., & Md Latar, N. H. (2013). Telepointer technology in telemedicine : a review. BioMedical Engineering OnLine, 12(1), 21. doi:10.1186/1475-925x-12-21Santos, L., Carbonaro, N., Tognetti, A., González, J., de la Fuente, E., Fraile, J., & Pérez-Turiel, J. (2018). Dynamic Gesture Recognition Using a Smart Glove in Hand-Assisted Laparoscopic Surgery. Technologies, 6(1), 8. doi:10.3390/technologies6010008Singh, A., Buonassisi, J., & Jain, S. (2014). Autonomous Multiple Gesture Recognition System for Disabled People. International Journal of Image, Graphics and Signal Processing, 6(2), 39-45. doi:10.5815/ijigsp.2014.02.05Ohn-Bar, E., & Trivedi, M. M. (2014). Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2368-2377. doi:10.1109/tits.2014.2337331Khan, S. A., & Engelbrecht, A. P. (2010). A fuzzy particle swarm optimization algorithm for computer communication network topology design. Applied Intelligence, 36(1), 161-177. doi:10.1007/s10489-010-0251-2Abraham, L., Urru, A., Normani, N., Wilk, M., Walsh, M., & O’Flynn, B. (2018). Hand Tracking and Gesture Recognition Using Lensless Smart Sensors. Sensors, 18(9), 2834. doi:10.3390/s18092834Zeng, Q., Kuang, Z., Wu, S., & Yang, J. (2019). A Method of Ultrasonic Finger Gesture Recognition Based on the Micro-Doppler Effect. Applied Sciences, 9(11), 2314. doi:10.3390/app9112314Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson, E., … Poupyrev, I. (2016). Soli. ACM Transactions on Graphics, 35(4), 1-19. doi:10.1145/2897824.2925953Sang, Y., Shi, L., & Liu, Y. (2018). Micro Hand Gesture Recognition System Using Ultrasonic Active Sensing. IEEE Access, 6, 49339-49347. doi:10.1109/access.2018.2868268Ferri, J., Lidón-Roger, J., Moreno, J., Martinez, G., & Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials, 10(12), 1450. doi:10.3390/ma10121450Nunes, J., Castro, N., Gonçalves, S., Pereira, N., Correia, V., & Lanceros-Mendez, S. (2017). Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications. Sensors, 17(12), 2786. doi:10.3390/s17122786Ferri, J., Perez Fuster, C., Llinares Llopis, R., Moreno, J., & Garcia‑Breijo, E. (2018). Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Screen-Printing Technology on Textile Substrate. Sensors, 18(10), 3313. doi:10.3390/s18103313Cronin, S., & Doherty, G. (2018). Touchless computer interfaces in hospitals: A review. Health Informatics Journal, 25(4), 1325-1342. doi:10.1177/1460458217748342Haslinger, L., Wasserthal, S., & Zagar, B. G. (2017). P3.1 - A capacitive measurement system for gesture regocnition. Proceedings Sensor 2017. doi:10.5162/sensor2017/p3.1Cherenack, K., & van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9), 091301. doi:10.1063/1.474272

    Collaborative robot control with hand gestures

    Get PDF
    Mestrado de dupla diplomação com a Université Libre de TunisThis thesis focuses on hand gesture recognition by proposing an architecture to control a collaborative robot in real-time vision based on hand detection, tracking, and gesture recognition for interaction with an application via hand gestures. The first stage of our system allows detecting and tracking a bar e hand in a cluttered background using skin detection and contour comparison. The second stage allows recognizing hand gestures using a Machine learning method algorithm. Finally an interface has been developed to control the robot over. Our hand gesture recognition system consists of two parts, in the first part for every frame captured from a camera we extract the keypoints for every training image using a machine learning algorithm, and we appoint the keypoints from every image into a keypoint map. This map is treated as an input for our processing algorithm which uses several methods to recognize the fingers in each hand. In the second part, we use a 3D camera with Infrared capabilities to get a 3D model of the hand to implement it in our system, after that we track the fingers in each hand and recognize them which made it possible to count the extended fingers and to distinguish each finger pattern. An interface to control the robot has been made that utilizes the previous steps that gives a real-time process and a dynamic 3D representation.Esta dissertação trata do reconhecimento de gestos realizados com a mão humana, propondo uma arquitetura para interagir com um robô colaborativo, baseado em visão computacional, rastreamento e reconhecimento de gestos. O primeiro estágio do sistema desenvolvido permite detectar e rastrear a presença de uma mão em um fundo desordenado usando detecção de pele e comparação de contornos. A segunda fase permite reconhecer os gestos das mãos usando um algoritmo do método de aprendizado de máquina. Finalmente, uma interface foi desenvolvida para interagir com robô. O sistema de reconhecimento de gestos manuais está dividido em duas partes. Na primeira parte, para cada quadro capturado de uma câmera, foi extraído os pontos-chave de cada imagem de treinamento usando um algoritmo de aprendizado de máquina e nomeamos os pontos-chave de cada imagem em um mapa de pontos-chave. Este mapa é tratado como uma entrada para o algoritmo de processamento que usa vários métodos para reconhecer os dedos em cada mão. Na segunda parte, foi utilizado uma câmera 3D com recursos de infravermelho para obter um modelo 3D da mão para implementá-lo em no sistema desenvolvido, e então, foi realizado os rastreio dos dedos de cada mão seguido pelo reconhecimento que possibilitou contabilizar os dedos estendidos e para distinguir cada padrão de dedo. Foi elaborado uma interface para interagir com o robô manipulador que utiliza as etapas anteriores que fornece um processo em tempo real e uma representação 3D dinâmica

    Real time hand gesture recognition including hand segmentation and tracking

    Get PDF
    In this paper we present a system that performs automatic gesture recognition. The system consists of two main components: (i) A unified technique for segmentation and tracking of face and hands using a skin detection algorithm along with handling occlusion between skin objects to keep track of the status of the occluded parts. This is realized by combining 3 useful features, namely, color, motion and position. (ii) A static and dynamic gesture recognition system. Static gesture recognition is achieved using a robust hand shape classification, based on PCA subspaces, that is invariant to scale along with small translation and rotation transformations. Combining hand shape classification with position information and using DHMMs allows us to accomplish dynamic gesture recognition

    Simultaneous Localization and Recognition of Dynamic Hand Gestures

    Full text link
    A framework for the simultaneous localization and recognition of dynamic hand gestures is proposed. At the core of this framework is a dynamic space-time warping (DSTW) algorithm, that aligns a pair of query and model gestures in both space and time. For every frame of the query sequence, feature detectors generate multiple hand region candidates. Dynamic programming is then used to compute both a global matching cost, which is used to recognize the query gesture, and a warping path, which aligns the query and model sequences in time, and also finds the best hand candidate region in every query frame. The proposed framework includes translation invariant recognition of gestures, a desirable property for many HCI systems. The performance of the approach is evaluated on a dataset of hand signed digits gestured by people wearing short sleeve shirts, in front of a background containing other non-hand skin-colored objects. The algorithm simultaneously localizes the gesturing hand and recognizes the hand-signed digit. Although DSTW is illustrated in a gesture recognition setting, the proposed algorithm is a general method for matching time series, that allows for multiple candidate feature vectors to be extracted at each time step.National Science Foundation (CNS-0202067, IIS-0308213, IIS-0329009); Office of Naval Research (N00014-03-1-0108
    corecore