128 research outputs found

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    X-ray computed tomography

    Get PDF
    X-ray computed tomography (CT) can reveal the internal details of objects in three dimensions non-destructively. In this Primer, we outline the basic principles of CT and describe the ways in which a CT scan can be acquired using X-ray tubes and synchrotron sources, including the different possible contrast modes that can be exploited. We explain the process of computationally reconstructing three-dimensional (3D) images from 2D radiographs and how to segment the 3D images for subsequent visualization and quantification. Whereas CT is widely used in medical and heavy industrial contexts at relatively low resolutions, here we focus on the application of higher resolution X-ray CT across science and engineering. We consider the application of X-ray CT to study subjects across the materials, metrology and manufacturing, engineering, food, biological, geological and palaeontological sciences. We examine how CT can be used to follow the structural evolution of materials in three dimensions in real time or in a time-lapse manner, for example to follow materials manufacturing or the in-service behaviour and degradation of manufactured components. Finally, we consider the potential for radiation damage and common sources of imaging artefacts, discuss reproducibility issues and consider future advances and opportunities

    Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    Get PDF
    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources

    Measurement of Snowpack Density, Grain Size, and Black Carbon Concentration Using Time-domain Diffuse Optics

    Full text link
    Diffuse optical spectroscopy (DOS) techniques aim to characterize scattering media by examining their optical response to laser illumination. Time-domain DOS methods involve illuminating the medium with a laser pulse and using a fast photodetector to measure the time-dependent intensity of light that exits the medium after multiple scattering events. While DOS research traditionally focused on characterizing biological tissues, we demonstrate that time-domain diffuse optical measurements can also be used to characterize snow. We introduce a model that predicts the time-dependent reflectance of a snowpack as a function of its density, grain size, and black carbon content, and we develop an algorithm that retrieves these properties from measurements at two wavelengths. To validate our approach, we use a two-wavelength lidar system and measure the time-dependent reflectance of snow samples with varying properties. Rather than measuring direct surface returns, our system captures photons that enter and exit the snow at different points, separated by a small distance (4-10cm). We find strong, linear correlations between our retrievals of density and black carbon concentration, and ground truth measurements. Although the correlation is not as strong, we also find that our method is capable of distinguishing between small and large grains

    Introduction to the Globus toolkit

    Get PDF

    Real-time reconstruction and visualisation towards dynamic feedback control during time-resolved tomography experiments at TOMCAT

    Get PDF
    Tomographic X-ray microscopy beamlines at synchrotron light sources worldwide have pushed the achievable time-resolution for dynamic 3-dimensional structural investigations down to a fraction of a second, allowing the study of quickly evolving systems. The large data rates involved impose heavy demands on computational resources, making it difficult to readily process and interrogate the resulting volumes. The data acquisition is thus performed essentially blindly. Such a sequential process makes it hard to notice problems with the measurement protocol or sample conditions, potentially rendering the acquired data unusable, and it keeps the user from optimizing the experimental parameters of the imaging task at hand. We present an efficient approach to address this issue based on the real-time reconstruction, visualisation and on-the-fly an

    Large-Scale Data Management and Analysis (LSDMA) - Big Data in Science

    Get PDF
    • …
    corecore