30,959 research outputs found

    Adaptive control of large space structures using recursive lattice filters

    Get PDF
    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance

    CSI technology validation on an LSS ground experiment facility

    Get PDF
    The test bed developed at JPL for experimental evaluation of new technologies for the control of large flexible space structures is described. The experiment consists of a flexible spacecraft dynamic simulator, sensors, actuators, a microcomputer, and an advanced programming environment. The test bed has been operational for over a year, and thus far nine experiments were completed or are currently in progress. Several of these experiments were reported at the 1987 CSI conference, and several recent ones are documented in this paper, including high order adaptive control, non-parametric system identification, and mu-synthesis robust control. An aggressive program of experiments is planned for the forseeable future

    Autonomous pointing control of a large satellite antenna subject to parametric uncertainty

    Get PDF
    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness

    Ground-based adaptive optics coronagraphic performance under closed-loop predictive control

    Full text link
    The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant segmented mirror telescopes (GSMTs) to characterize terrestrial --- potentially habitable --- planets orbiting nearby stars with direct imaging. This will require continued development and implementation of optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding of the fundamental limits imposed by atmospheric turbulence. Here we seek to address this question with a semi-analytic framework for calculating the post-coronagraph contrast in a closed-loop AO system. We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow turbulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller, which we show could provide over a factor of 1400 gain in raw PSF contrast at 1 λ/D\lambda/D on bright stars, and more than a factor of 30 gain on an I = 7.5 mag star such as Proxima. More sophisticated predictive control can be expected to improve this even further. Assuming a photon noise limited observing technique such as High Dispersion Coronagraphy, these gains in raw contrast will decrease integration times by the same large factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies which will enable ground-based telescopes to characterize terrrestrial planets.Comment: Accepted to JATI

    Feasibility of conventional control techniques for large highly coupled elastic boost vehicles Final report

    Get PDF
    Control techniques for large highly-coupled elastic boost vehicles with elastic and fuel slosh mode frequencies close to desired control frequencies - motion equation

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory
    • …
    corecore