2,321 research outputs found

    Active Stereo Vision for 3D Profile Measurement

    Get PDF

    Index based triangulation method for efficient generation of large three-dimensional ultrasonic C-scans

    Get PDF
    The demand for high speed ultrasonic scanning of large and complex components is driven by a desire to reduce production bottlenecks during the non-destructive evaluation of critical parts. Emerging systems (including robotic inspection) allow the collection of large data volumes in short time spans, compared to existing inspection systems. To maximize throughput, it is crucial that the reconstructed inspection data sets are generated and evaluated rapidly without a loss of detail. This requires new data visualization and analysis tools capable of mapping complex geometries whilst guaranteeing full part coverage. This paper presents an entirely new approach for the visualization of three-dimensional ultrasonic C-scans, suitable for application to high data throughput ultrasonic phased array inspection of large and complex parts. Existing reconstruction approaches are discussed and compared with the new Index Based Triangulation (IBT) method presented. The IBT method produces 3D C-scan representation, presented as coloured tessellated surfaces, and the approach is shown to work efficiently even on challenging geometry. An additional differentiating characteristic of the IBT method is that it allows easy detection of lack of coverage (an essential feature to ensure that inspection coverage can be guaranteed on critical components). Results demonstrate that the IBT C-scan generation approach runs over 60 times faster than a C-scan display based on Delaunay triangulation and over 500 times faster than surface reconstruction C-scans. In summary the main benefits of the new IBT technique are: • High speed generation of C-scans on large ultrasonic data sets (orders of magnitude improvement over surface reconstruction C-Scans) • Ability to operate efficiently on 3D mapped data sets (allowing 3D interpretation of C scans on complex geometry components) • Intrinsic indication of lack of inspection coverag

    3D Laser Scanner Development and Analysis

    Get PDF

    Calibration and 3D Mapping for Multi-sensor Inspection Tasks with Industrial Robots

    Get PDF
    Le ispezioni di qualità sono una parte essenziale per garantire che il processo di produzione si svolga senza intoppi e che il prodotto finale soddisfi standard elevati. I robot industriali sono diventati uno strumento fondamentale per condurre le ispezioni di qualità, consentendo precisione e coerenza nel processo di ispezione. Utilizzando tecnologie di ispezione avanzate, i robot industriali possono rilevare difetti e anomalie nei prodotti a una velocità superiore a quella degli ispettori umani, migliorando l'efficienza della produzione. Grazie alla capacità di automatizzare le attività di ispezione ripetitive e noiose, i robot industriali possono anche ridurre il rischio di errore umano e aumentare la qualità dei prodotti. Con il continuo progresso tecnologico, l'uso dei robot industriali per le ispezioni di qualità si sta diffondendo in tutti i settori industriali, da quello automobilistico e manifatturiero a quello aerospaziale. Lo svantaggio di una tale varietà di compiti di ispezione è che di solito le ispezioni industriali richiedono configurazioni robotiche specifiche e sensori appropriati, rendendo ogni ispezione molto specifica e personalizzata. Per questo motivo, la presente tesi fornisce una panoramica di un framework di ispezione generale che risolve il problema della creazione di celle di lavoro di ispezione personalizzate, proponendo moduli software generali che possono essere facilmente configurati per affrontare ogni specifico scenario di ispezione. In particolare, questa tesi si concentra sui problemi della calibrazione occhio-mano, ovvero il problema di calcolare con precisione la posizione del sensore nella cella di lavoro rispetto all'inquadratura del robot, e del Data Mapping, utilizzato per mappare i dati del sensore nella rappresentazione del modello 3D dell'oggetto ispezionato. Per la calibrazione occhio-mano proponiamo due tecniche che risolvono con precisione la posizione del sensore in più configurazioni robotiche. Entrambe considerano la configurazione robot-sensore eye-on-base e eye-in-hand, vale a dire il modo in cui discriminiamo se il sensore è montato in un punto fisso della cella di lavoro o nel braccio terminale del manipolatore robotico, rispettivamente. Inoltre, uno dei principali contributi di questa tesi è un approccio generale alla calibrazione occhio-mano che è anche in grado di gestire, grazie a una formulazione unificata di ottimizzazione del grafo di posa, configurazioni di ispezione in cui sono coinvolti più sensori (ad esempio, reti multi-camera). In definitiva, questa tesi propone un metodo generale che sfrutta un risultato preciso e accurato della calibrazione occhio-mano per affrontare il problema del Data Mapping per i robot di ispezione multiuso. Questo approccio è stato applicato in diverse configurazioni di ispezione, dall'industria automobilistica a quella aerospaziale e manifatturiera. La maggior parte dei contributi presentati in questa tesi sono disponibili come pacchetti software open-source. Riteniamo che ciò favorisca la collaborazione, consenta una precisa ripetibilità dei nostri esperimenti e faciliti la ricerca futura sulla calibrazione di complesse configurazioni robotiche industriali.Quality inspections are an essential part of ensuring the manufacturing process runs smoothly and that the final product meets high standards. Industrial robots have emerged as a key tool in conducting quality inspections, allowing for precision and consistency in the inspection process. By utilizing advanced inspection technologies, industrial robots can detect defects and anomalies in products at a faster pace than human inspectors, improving production efficiency. With the ability to automate repetitive and tedious inspection tasks, industrial robots can also reduce the risk of human error and increase product quality. As technology continues to advance, the use of industrial robots for quality inspections is becoming more widespread across industrial sectors, ranging from automotive and manufactury to aerospace industries. The drawback of such a large variety of inspection tasks is that usually industrial inspections require specific robotic setups and appropriate sensors, making every inspection very specific and custom buildt. For this reason, this thesis gives an overview of a general inspection framework that solves the problem of creating customized inspection workcells by proposing general software modules that can be easily configured to address each specific inspection scenario. In particular, this thesis is focusing on the problems of Hand-eye Calibration, that is the problem of accurately computing the position of the sensor in the workcell with respect to the robot frame, and Data Mapping that is used to map sensor data to the 3D model representation of the inspected object. For the Hand-eye Calibration we propose two techniques that accurately solve the position of the sensor in multiple robotic setups. They both consider eye-on-base and eye-in-hand robot-sensor configuration, namely, this is the way in which we discriminate if the sensor is mounted in a fixed place in the workcell or in the end-effector of the robot manipulator, respectively. Moreover, one of the main contributions of this thesis is a general hand-eye calibration approach that is also capable of handling, thanks to a unified pose-graph optimization formulation, inspection setups where multiple sensors are involved (e.g., multi-camera networks). In the end, this thesis is proposing a general method that takes advantage of a precise and accurate hand-eye calibration result to address the problem of Data Mapping for multi-purpose inspection robots. This approach has been applied in multiple inspection setups, ranging from automotive to aerospace and manufactury industry. Most of the contributions presented in this thesis are available as open-source software packages. We believe that this will foster collaboration, enable precise repeatability of our experiments, and facilitate future research on the calibration of complex industrial robotic setups

    Structured-light based sensing using a single fixed fringe grating: Fringe boundary detection and 3-D reconstruction

    Get PDF
    Advanced electronic manufacturing requires the 3-D inspection of very small surfaces like the solder bumps on wafers for direct die-to-die bonding. Yet the microscopic size and highly specular and textureless nature of the surfaces make the task difficult. It is also demanded that the size of the entire inspection system be small so as to minimize restraint on the operation of the various moving parts involved in the manufacturing process. In this paper, we describe a new 3-D reconstruction mechanism for the task. The mechanism is based upon the well-known concept of structured-light projection, but adapted to a new configuration that owns a particularly small system size and operates in a different manner. Unlike the traditional mechanisms which involve an array of light sources that occupy a rather extended physical space, the proposed mechanism consists of only a single light source plus a binary grating for projecting binary pattern. To allow the projection at each position of the inspected surface to vary and form distinct binary code, the binary grating is shifted in space. In every shift, a separate image of the illuminated surface is taken. With the use of pattern projection, and of discrete coding instead of analog coding in the projection, issues like texture-absence, image saturation, and image noise of the inspected surfaces are much lessened. Experimental results on a variety of objects are presented to illustrate the effectiveness of this mechanism. © 2008 IEEE.published_or_final_versio

    State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]

    Get PDF
    This paper reviews recent developments of non-contact three-dimensional (3D) surface metrology using an active structured optical probe. We focus primarily on those active non-contact 3D surface measurement techniques that could be applicable to the manufacturing industry. We discuss principles of each technology, and its advantageous characteristics as well as limitations. Towards the end, we discuss our perspectives on the current technological challenges in designing and implementing these methods in practical applications.Purdue Universit

    360-deg profilometry: new techniques for display and acquisition

    Get PDF
    Two optical methods are proposed for shape measurement and defect detection of curved surfaces in the form of a complete 360- deg profile of the object. The first one is the standard structured light approach. Display of the resulting data is the emphasis of this section. The second approach uses modulated structured light with a scanning digital camera for faster and simpler data acquisition. Quantitative processing is done off-line while real-time moire produces enhanced display of the defects for qualitative analysis.published_or_final_versio
    • …
    corecore