834 research outputs found

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    Visual Flow-based Programming Plugin for Brain Computer Interface in Computer-Aided Design

    Full text link
    Over the last half century, the main application of Brain Computer Interfaces, BCIs has been controlling wheelchairs and neural prostheses or generating text or commands for people with restricted mobility. There has been very limited attention in the field to applications for computer aided design, despite the potential of BCIs to provide a new form of environmental interaction. In this paper we introduce the development and application of Neuron, a novel BCI tool that enables designers with little experience in neuroscience or computer programming to gain access to neurological data, along with established metrics relevant to design, create BCI interaction prototypes, both with digital onscreen objects and physical devices, and evaluate designs based on neurological information and record measurements for further analysis. After discussing the BCI tool development, the article presents its capabilities through two case studies, along with a brief evaluation of the tool performance and a discussion of implications, limitations, and future improvement

    An Objectivation of Visual Perception using Virtual Reality, Brain-Computer Interfaces and Deep Learning

    Get PDF
    Der Sehsinn ermöglicht eine detailgenaue Wahrnehmung der Welt. Virtual Reality (VR), Brain-Computer Interfaces (BCI) und Deep Learning sind neue Technologien, die uns hierbei neue Möglichkeiten für die Erforschung der visuellen Wahrnehmung geben. In dieser Dissertation wird ein System für die Augenheilkunde vorgestellt, das Augenkrankheiten in VR simulieren kann und durch Hinzufügen von BCI und KI eine objektive Diagnostik von Gesichtsfeldausfällen ermöglicht. Für ein besseres Verständnis der Arbeit wird das menschliche Sehen mit Modellen der Computer Vision verglichen und basierend hierauf ein allgemeines vierstufiges Seh-Modell eingeführt. Innerhalb des Modells werden Schnittstellen zwischen der biologisch-realen und der technologisch-virtuellen Welt evaluiert. Besteht heutzutage bei einem Patienten der Verdacht auf einen Gesichtsfeldausfall (Skotom), so werden ophthalmologische Geräte wie das Perimeter zur Ausmessung des Gesichtsfeldes eingesetzt. Das dem Stand der Technik entsprechende Verfahren liegt dem subjektiven Feedback des Patienten zugrunde. Entsprechend können Lerneffekte beim Patienten das Ergebnis nicht unwesentlich beeinflussen. Um diese Problematiken zu umgehen, wurde in dieser Dissertation ein objektives Perimetriesystem auf Basis von VR, BCI und Deep Learning erfolgreich implementiert und evaluiert. Ein weiterer Vorteil des neuen Systems ist die Möglichkeit zur Einsetzung bei Menschen mit Schwerbehinderung, Kindern und Tieren. Der Lösungsansatz dieser Dissertation ist die Simulation (pathologischer/eingeschränkter) Sehzustände. Hierfür wurde der Zustand von Glaukompatienten mit Hilfe von VR-Technologien virtuell abgebildet. Die resultierende VR-Anwendung bildet individuelle Glaukomverläufe immersiv in VR ab. Evaluiert wurde die Simulationsumgebung mit medizinischem Fachpersonal und Glaukompatienten an der Augenklinik des Universitätsklinikums Heidelberg (\textit{N}=22). Hierbei wurde gezeigt, dass VR eine geeignete Maßnahme zur Simulation von Sehbedingungen ist und zum Verständnis des Patientenzustandes einen Beitrag leisten kann. Ausgehend von dieser Simulationsumgebung wurden weitere Software- und Hardwaremodule hinzugefügt. Erzeugte stationäre visuelle Stimuli wurden hierbei eingesetzt, um (simulierte) Sehfehler durch ein Elektroenzephalographie (EEG)-basiertes BCI zu erkennen. Das System wurde in einer internationalen Laborstudie (\textit{N}=15) in Zusammenarbeit mit dem Massachusetts Institute of Technology getestet und validiert. Die gesammelten Daten deuten darauf hin, dass das System für die Klassifizierung des zentralen (88\% Genauigkeit pro 2,5 Sekunden EEG-Daten) und peripheren Gesichtsfeldes (63-81\% Genauigkeit) geeignet ist, während es für periphere Positionen aufgrund der Technologiesensitivität zu Einschränkungen (50-57\% Genauigkeit) kommt. Entsprechend sollte das System für Skotome eingesetzt werden, sofern der Sehausfall das zentrale Sehen oder ganze Quadranten des Gesichtsfelds betrifft. Aufgrund der Notwendigkeit für einen besseren ambulanten EEG-Messaufbau werden modulare, plattformübergreifende Softwareimplementierungen und neuartige, zum Patent angemeldete, EEG-Elektroden vorgestellt. Die neuartigen Elektroden bieten ein besseres Signal-zu-Rausch-Verhältnis als herkömmliche Trockenelektroden (\SI{1,35}{dB} Verbesserung), sind schnell anzulegen, wiederverwendbar und hinterlassen kaum bis keine unerwünschten Rückstände im Haar des Patienten. Diese Dissertation legt den Grundstein für ein VR, BCI und KI-basiertes Perimetrie-Messsystem, welches insbesondere im ambulanten Setting oder bei Patienten mit Einschränkungen zum Einsatz kommen könnte

    Objectivation of Visual Perception

    Get PDF
    Der Sehsinn ermöglicht eine detailgenaue Wahrnehmung der Welt. Virtual Reality (VR), Brain-Computer Interfaces (BCI) und Deep Learning sind neue Technologien, die uns hierbei neue Möglichkeiten für die Erforschung der visuellen Wahrnehmung geben. In dieser Dissertation wird ein System für die Augenheilkunde vorgestellt, das Augenkrankheiten in VR simulieren kann und durch Hinzufügen von BCI und KI eine objektive Diagnostik von Gesichtsfeldausfällen ermöglicht. Für ein besseres Verständnis der Arbeit wird das menschliche Sehen mit Modellen der Computer Vision verglichen und basierend hierauf ein allgemeines vierstufiges Seh-Modell eingeführt. Innerhalb des Modells werden Schnittstellen zwischen der biologisch-realen und der technologisch-virtuellen Welt evaluiert. Besteht heutzutage bei einem Patienten der Verdacht auf einen Gesichtsfeldausfall (Skotom), so werden ophthalmologische Geräte wie das Perimeter zur Ausmessung des Gesichtsfeldes eingesetzt. Das dem Stand der Technik entsprechende Verfahren liegt dem subjektiven Feedback des Patienten zugrunde. Entsprechend können Lerneffekte beim Patienten das Ergebnis nicht unwesentlich beeinflussen. Um diese Problematiken zu umgehen, wurde in dieser Dissertation ein objektives Perimetriesystem auf Basis von VR, BCI und Deep Learning erfolgreich implementiert und evaluiert. Ein weiterer Vorteil des neuen Systems ist die Möglichkeit zur Einsetzung bei Menschen mit Schwerbehinderung, Kindern und Tieren. Der Lösungsansatz dieser Dissertation ist die Simulation (pathologischer/eingeschränkter) Sehzustände. Hierfür wurde der Zustand von Glaukompatienten mit Hilfe von VR-Technologien virtuell abgebildet. Die resultierende VR-Anwendung bildet individuelle Glaukomverläufe immersiv in VR ab. Evaluiert wurde die Simulationsumgebung mit medizinischem Fachpersonal und Glaukompatienten an der Augenklinik des Universitätsklinikums Heidelberg (\textit{N}=22). Hierbei wurde gezeigt, dass VR eine geeignete Maßnahme zur Simulation von Sehbedingungen ist und zum Verständnis des Patientenzustandes einen Beitrag leisten kann. Ausgehend von dieser Simulationsumgebung wurden weitere Software- und Hardwaremodule hinzugefügt. Erzeugte stationäre visuelle Stimuli wurden hierbei eingesetzt, um (simulierte) Sehfehler durch ein Elektroenzephalographie (EEG)-basiertes BCI zu erkennen. Das System wurde in einer internationalen Laborstudie (\textit{N}=15) in Zusammenarbeit mit dem Massachusetts Institute of Technology getestet und validiert. Die gesammelten Daten deuten darauf hin, dass das System für die Klassifizierung des zentralen (88\% Genauigkeit pro 2,5 Sekunden EEG-Daten) und peripheren Gesichtsfeldes (63-81\% Genauigkeit) geeignet ist, während es für periphere Positionen aufgrund der Technologiesensitivität zu Einschränkungen (50-57\% Genauigkeit) kommt. Entsprechend sollte das System für Skotome eingesetzt werden, sofern der Sehausfall das zentrale Sehen oder ganze Quadranten des Gesichtsfelds betrifft. Aufgrund der Notwendigkeit für einen besseren ambulanten EEG-Messaufbau werden modulare, plattformübergreifende Softwareimplementierungen und neuartige, zum Patent angemeldete, EEG-Elektroden vorgestellt. Die neuartigen Elektroden bieten ein besseres Signal-zu-Rausch-Verhältnis als herkömmliche Trockenelektroden (\SI{1,35}{dB} Verbesserung), sind schnell anzulegen, wiederverwendbar und hinterlassen kaum bis keine unerwünschten Rückstände im Haar des Patienten. Diese Dissertation legt den Grundstein für ein VR, BCI und KI-basiertes Perimetrie-Messsystem, welches insbesondere im ambulanten Setting oder bei Patienten mit Einschränkungen zum Einsatz kommen könnte

    An Objectivation of Visual Perception using Virtual Reality, Brain-Computer Interfaces and Deep Learning

    Get PDF
    Der Sehsinn ermöglicht eine detailgenaue Wahrnehmung der Welt. Virtual Reality (VR), Brain-Computer Interfaces (BCI) und Deep Learning sind neue Technologien, die uns hierbei neue Möglichkeiten für die Erforschung der visuellen Wahrnehmung geben. In dieser Dissertation wird ein System für die Augenheilkunde vorgestellt, das Augenkrankheiten in VR simulieren kann und durch Hinzufügen von BCI und KI eine objektive Diagnostik von Gesichtsfeldausfällen ermöglicht. Für ein besseres Verständnis der Arbeit wird das menschliche Sehen mit Modellen der Computer Vision verglichen und basierend hierauf ein allgemeines vierstufiges Seh-Modell eingeführt. Innerhalb des Modells werden Schnittstellen zwischen der biologisch-realen und der technologisch-virtuellen Welt evaluiert. Besteht heutzutage bei einem Patienten der Verdacht auf einen Gesichtsfeldausfall (Skotom), so werden ophthalmologische Geräte wie das Perimeter zur Ausmessung des Gesichtsfeldes eingesetzt. Das dem Stand der Technik entsprechende Verfahren liegt dem subjektiven Feedback des Patienten zugrunde. Entsprechend können Lerneffekte beim Patienten das Ergebnis nicht unwesentlich beeinflussen. Um diese Problematiken zu umgehen, wurde in dieser Dissertation ein objektives Perimetriesystem auf Basis von VR, BCI und Deep Learning erfolgreich implementiert und evaluiert. Ein weiterer Vorteil des neuen Systems ist die Möglichkeit zur Einsetzung bei Menschen mit Schwerbehinderung, Kindern und Tieren. Der Lösungsansatz dieser Dissertation ist die Simulation (pathologischer/eingeschränkter) Sehzustände. Hierfür wurde der Zustand von Glaukompatienten mit Hilfe von VR-Technologien virtuell abgebildet. Die resultierende VR-Anwendung bildet individuelle Glaukomverläufe immersiv in VR ab. Evaluiert wurde die Simulationsumgebung mit medizinischem Fachpersonal und Glaukompatienten an der Augenklinik des Universitätsklinikums Heidelberg (\textit{N}=22). Hierbei wurde gezeigt, dass VR eine geeignete Maßnahme zur Simulation von Sehbedingungen ist und zum Verständnis des Patientenzustandes einen Beitrag leisten kann. Ausgehend von dieser Simulationsumgebung wurden weitere Software- und Hardwaremodule hinzugefügt. Erzeugte stationäre visuelle Stimuli wurden hierbei eingesetzt, um (simulierte) Sehfehler durch ein Elektroenzephalographie (EEG)-basiertes BCI zu erkennen. Das System wurde in einer internationalen Laborstudie (\textit{N}=15) in Zusammenarbeit mit dem Massachusetts Institute of Technology getestet und validiert. Die gesammelten Daten deuten darauf hin, dass das System für die Klassifizierung des zentralen (88\% Genauigkeit pro 2,5 Sekunden EEG-Daten) und peripheren Gesichtsfeldes (63-81\% Genauigkeit) geeignet ist, während es für periphere Positionen aufgrund der Technologiesensitivität zu Einschränkungen (50-57\% Genauigkeit) kommt. Entsprechend sollte das System für Skotome eingesetzt werden, sofern der Sehausfall das zentrale Sehen oder ganze Quadranten des Gesichtsfelds betrifft. Aufgrund der Notwendigkeit für einen besseren ambulanten EEG-Messaufbau werden modulare, plattformübergreifende Softwareimplementierungen und neuartige, zum Patent angemeldete, EEG-Elektroden vorgestellt. Die neuartigen Elektroden bieten ein besseres Signal-zu-Rausch-Verhältnis als herkömmliche Trockenelektroden (\SI{1,35}{dB} Verbesserung), sind schnell anzulegen, wiederverwendbar und hinterlassen kaum bis keine unerwünschten Rückstände im Haar des Patienten. Diese Dissertation legt den Grundstein für ein VR, BCI und KI-basiertes Perimetrie-Messsystem, welches insbesondere im ambulanten Setting oder bei Patienten mit Einschränkungen zum Einsatz kommen könnte

    Design of a breastboard for prone breast radiotherapy

    Get PDF

    A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey

    Full text link
    The growing interest in the Metaverse has generated momentum for members of academia and industry to innovate toward realizing the Metaverse world. The Metaverse is a unique, continuous, and shared virtual world where humans embody a digital form within an online platform. Through a digital avatar, Metaverse users should have a perceptual presence within the environment and can interact and control the virtual world around them. Thus, a human-centric design is a crucial element of the Metaverse. The human users are not only the central entity but also the source of multi-sensory data that can be used to enrich the Metaverse ecosystem. In this survey, we study the potential applications of Brain-Computer Interface (BCI) technologies that can enhance the experience of Metaverse users. By directly communicating with the human brain, the most complex organ in the human body, BCI technologies hold the potential for the most intuitive human-machine system operating at the speed of thought. BCI technologies can enable various innovative applications for the Metaverse through this neural pathway, such as user cognitive state monitoring, digital avatar control, virtual interactions, and imagined speech communications. This survey first outlines the fundamental background of the Metaverse and BCI technologies. We then discuss the current challenges of the Metaverse that can potentially be addressed by BCI, such as motion sickness when users experience virtual environments or the negative emotional states of users in immersive virtual applications. After that, we propose and discuss a new research direction called Human Digital Twin, in which digital twins can create an intelligent and interactable avatar from the user's brain signals. We also present the challenges and potential solutions in synchronizing and communicating between virtual and physical entities in the Metaverse
    corecore