1,206 research outputs found

    Meta-Heurisitics for Job-Shop Rescheduling

    Get PDF

    Industry 4.0 - Shop-Floor Negotiation

    Get PDF

    Enhancing Facility Layout via Ant Colony Technique (Act)

    Get PDF
    Cellular manufacturing systems optimization is investigated and manipulated using artificial intelligent (AI) approach combining facility layout and group technology scope. This research applied the ANT COLONY technique  (ACT) optimization where this process was inspired by the real ants and how they move and build colonies by avoiding obstacle and simulate the process to get a procedure that can be adopted on this optimization process. In this research the problem goes in two way first the theory that take account the positions of machines inside the plant and its equations of controlling and second is the routing of part during product life cycle then execute results and applying it on factory configuration. The application of Ants system was carried out on industrial factory of electrical motor where all data was taken from the factory depending on the position and sequence of operations took place. Results were carried out in a way that depending on the showing site plan configurations for each stage and studying the iteration curve response to the parameters changes while testing the system during different environments. The results show high flexibility in ACS (Ant colony system) with fast response and high reduction in the distance crossed by the product part that reached 500m. The ratio of the reduction is 0.625. Keyword: Artificial intelligent (AI), Ant colony (AC), pheromone, genetic algorithm, facility layout, cell manufacturing (CM)

    Flow Shop Scheduling for Energy Efficient Manufacturing

    Get PDF
    A large number of new peaking power plants with their associated auxiliary equipment are installed to meet the growing peak demand every year. However, 10% utility capacity is used for only 1%~2% of the hours in a year. Thus, to meet the demand and supply balance through increasing the infrastructure investments only on the supply side is not economical. Alternatively, demand-side management might cut the cost of maintaining this balance via offering consumers incentives to manage their consumption in response to the price signals. Time-varying electricity rate is a demand-side management scheme. Under the time-varying electricity rate, the electricity price is high during the peak demand periods, while it is low during the off-peak times. Thus, consumers might get the cost benefits through shifting power usages from the high price periods to the low price periods, which leading to reduce the peak power of the grid. The current research works on the price-based demand-side management are primarily focusing on residential and commercial users through optimizing the “shiftable” appliance schedules. A few research works have been done focusing manufacturing facilities. However, residential, commercial and industrial sectors each occupies about one-third of the total electricity consumption. Thus, this thesis investigates the flow shop scheduling problems that reduce electricity costs under time-varying electricity rate. A time-indexed integer programming is proposed to identify the manufacturing schedules that minimize the electricity cost for a single factory with flow shops under time-of-use (TOU) rate. The result shows that a 6.9% of electricity cost reduction can be reached by shifting power usage from on-peak period to other periods. However, in the case when a group of factories served by one utility, each factory shifting power usage from on-peak period to off-peak hours independently, which might change the time of peak demand periods. Thus, a TOU pricing combined with inclining block rate (IBR) is proposed to avoid this issue. Two optimization problems are studied to demonstrate this approach. Each factory optimizes manufacturing schedule to minimize its electricity cost: (1) under TOU pricing, and (2) under TOU-IBR pricing. The results show that the electricity cost of each factory is minimized, but the total electricity cost at the 2nd hour is 6.25% beyond the threshold under TOU pricing. It also shows that factories collaborate with each other to minimize the electricity cost, and meanwhile, the power demand at each hour is not larger than the thresholds under TOU-IBR pricing. In contrast to TOU rate, the electricity price cannot be determined in ahead under real-time price (RTP), since it is dependent on the total energy consumption of the grid. Thus, the interactions between electricity market and the manufacturing schedules bring additional challenges. To address this issue, the time-indexed integer programming is developed to identify the manufacturing schedule that has the minimal electricity cost of a factory under the RTP. This approach is demonstrated using a manufacturing facility with flow shops operating during different time periods in a microgrid which also served residential and commercial buildings. The results show that electricity cost reduction can be achieved by 6.3%, 10.8%, and 24.8% for these three time periods, respectively. The total cost saving of manufacturing facility is 15.1% over this 24-hour period. The results also show that although residential and commercial users are under “business-as-usual” situation, their electricity costs can also be changed due to the power demand changing in the manufacturing facilities. Furthermore, multi-manufacturing factories served by one utility are investigated. The manufacturing schedules of a group of manufacturing facilities with flow shops subject to the RTP are optimized to minimize their electricity cost. This problem can be formulated as a centralized optimization problem. Alternatively, this optimization problem can be decomposed into several pieces. A heuristic approach is proposed to optimize the sub-optimization problems in parallel. The result shows that both the individual and total electricity cost of factories are minimized and meanwhile the computation time is reduced compared with the centralized algorithm

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems
    • …
    corecore