75,744 research outputs found

    Application Development for the Internet of Things: Observations and Challenges

    Get PDF
    International audienceThe Internet of Things (IoT) domain can be considered to be an amalgamation of the hitherto well- researched Wireless Sensor and Actuator Networks (WSAN) and Pervasive Computing domains. However, application development on this platform still remains challenging. In this paper, we first discuss a specific real world instance of an oft- cited IoT application: the Smart Home application, and gain insight into IoT application development by actually implementing it. Based on the above, we then present the design, development and deployment techniques for a real world IoT system from ground up and describe of various interaction patterns that naturally occur in such applications. We further discuss the challenges faced while reusing and combining approaches from the existing domains of WSANs and Pervasive Computing, into the domain of IoT. Finally, we conclude by using these insights to present a roadmap for designing an application development framework for IoT

    A policy language definition for provenance in pervasive computing

    Get PDF
    Recent advances in computing technology have led to the paradigm of pervasive computing, which provides a means of simplifying daily life by integrating information processing into the everyday physical world. Pervasive computing draws its power from knowing the surroundings and creates an environment which combines computing and communication capabilities. Sensors that provide high-resolution spatial and instant measurement are most commonly used for forecasting, monitoring and real-time environmental modelling. Sensor data generated by a sensor network depends on several influences, such as the configuration and location of the sensors or the processing performed on the raw measurements. Storing sufficient metadata that gives meaning to the recorded observation is important in order to draw accurate conclusions or to enhance the reliability of the result dataset that uses this automatically collected data. This kind of metadata is called provenance data, as the origin of the data and the process by which it arrived from its origin are recorded. Provenance is still an exploratory field in pervasive computing and many open research questions are yet to emerge. The context information and the different characteristics of the pervasive environment call for different approaches to a provenance support system. This work implements a policy language definition that specifies the collecting model for provenance management systems and addresses the challenges that arise with stream data and sensor environments. The structure graph of the proposed model is mapped to the Open Provenance Model in order to facilitating the sharing of provenance data and interoperability with other systems. As provenance security has been recognized as one of the most important components in any provenance system, an access control language has been developed that is tailored to support the special requirements of provenance: fine-grained polices, privacy policies and preferences. Experimental evaluation findings show a reasonable overhead for provenance collecting and a reasonable time for provenance query performance, while a numerical analysis was used to evaluate the storage overhead

    MobiStreams: A Reliable Distributed Stream Processing System for Mobile Devices

    Get PDF
    Multi-core phones are now pervasive. Yet, existing applications rely predominantly on a client-server computing paradigm, using phones only as thin clients, sending sensed information via the cellular network to servers for processing. This makes the cellular network the bottleneck, limiting overall application performance. In this paper, we propose Mobi Streams, a Distributed Stream Processing System (DSPS) that runs directly on smartphones. Mobi Streams can offload computing from remote servers to local phones and thus alleviate the pressure on the cellular network. Implementing DSPS on smartphones faces significant challenges: 1) multiple phones can readily fail simultaneously, and 2) the phones' ad-hoc WiFi network has low bandwidth. Mobi Streams tackles these challenges through two new techniques: 1) token-triggered check pointing, and 2) broadcast-based check pointing. Our evaluations driven by two real world applications deployed in the US and Singapore show that migrating from a server platform to a smartphone platform eliminates the cellular network bottleneck, leading to 0.78~42.6X throughput increase and 10%~94.8% latency decrease. Also, Mobi Streams' fault tolerance scheme increases throughput by 230% and reduces latency by 40% vs. prior state-of-the-art fault-tolerant DSPSs

    Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    Get PDF
    EEG-based Brain-computer interfaces (BCI) are facing grant challenges in their real-world applications. The technical difficulties in developing truly wearable multi-modal BCI systems that are capable of making reliable real-time prediction of users’ cognitive states under dynamic real-life situations may appear at times almost insurmountable. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report our attempt to develop a pervasive on-line BCI system by employing state-of-art technologies such as multi-tier fog and cloud computing, semantic Linked Data search and adaptive prediction/classification models. To verify our approach, we implement a pilot system using wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end fog servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end cloud servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch and the UCSD Movement Disorder Center to use our system in real-life personal stress and in-home Parkinson’s disease patient monitoring experiments. We shall proceed to develop a necessary BCI ontology and add automatic semantic annotation and progressive model refinement capability to our system

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Location-based technologies for learning

    Get PDF
    Emerging technologies for learning report - Article exploring location based technologies and their potential for educatio
    • 

    corecore