63 research outputs found

    Real-vehicle integration of driver support application with IPv6 GeoNetworking

    Get PDF
    International audienceOne of the essential usage of Intelligent Trans- portation Systems (ITS) applications is to provide road traffic information to vehicle drivers for road safety and efficient drive. For this usage, it is necessary to integrate geographical routing mechanisms in vehicular ad hoc network (VANET) into ITS applications. In this paper, we design and implement an ITS application which relies on IPv6 GeoNetworking; a geographical addressing and routing mechanism developed in the GeoNet project. Our application supports realistic use case scenarios, therefore we integrated it into INRIA's vehicular platform. The system has publicly been demonstrated in realistic scenarios

    Real-Vehicle Integration of Driver Support Application with IPv6 GeoNetworking

    Full text link

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    Vehicular ad hoc networking based on the incorporation of geographical information in the IPv6 header

    Get PDF
    Several approaches can be identified in the domain of vehicular ad hoc networks (VANET). Internet Protocol version 6 (IPv6) networking and non-IP geographical networking can each fulfill a subset of the application requirements. In general, a combination of both techniques is proposed to meet all of the application requirements. In this case, packets of one VANET routing protocol are encapsulated inside packets of another. This tunneling, together with the position service required for non-IP geographical unicasting, makes such a combined solution rather complex, and hence more challenging to implement, debug, and maintain. In this article, a new VANET approach is presented that relies on the key assumptions that geo-anycast functionality is not required by the applications, and that geographic unicasting is not needed when IP-based unicasting is provided. This enables the adoption of an IPv6-only VANET solution, removing the need for tunneling and position services. New techniques are required to support IPv6-based geo-broadcasting. In this article, it is described how addresses should be assigned, how geographical data can be incorporated in the IPv6 address, how the other IPv6 header fields can be used to contain additional VANET information, and how routing should be handled to guarantee that no modifications are required to the application units. The implementation of the proposed techniques is described, and the correct functionality of the solutions is experimentally demonstrated. Finally, to prove the added value compared to current state-of-the-art propositions, the presented solution is stacked up against the recently released ETSI standards TS 102 636-4-1 (geographical addressing and forwarding) and TS 102 636-6-1 (transmission of IPv6 packets over GeoNetworking protocols)

    An Emulation Framework for Evaluating V2X Communications in C-ITS Applications

    Get PDF
    C-ITS enhances transportation systems with advanced communication tech, enabling vehicle-to-vehicle and vehicle-to-infrastructure data exchange for real-time decision-making. The thesis explores C-ITS concepts, DSRC, and C-V2X tech, and proposes a versatile C-ITS framework for app prototyping and communication evaluation. Real-world tests and simulations validate its potential to improve road safety and efficiency, suggesting integration opportunities for stakeholders and promoting a smarter, sustainable transportation ecosystem

    SURVEY OF VEHICLE AD-HOC NETWORK

    Get PDF
    The communication is done in between cars that is based on the short range wireless technology. It become safety road and travel comfort using ad-hoc network. We see the different to communication mode in car network. Also we see the Geonetworking with car network. IPv6 is considered as the most appropriate technologies to support communication in VANET thanks to its extended address space, enhanced mobility support, ease of configuration and embedded security

    Distance Cautious IP - A Systematic Approach in VANETS

    Full text link
    VANET is a decentralized network that allows the vehicles to communicate with each other for providingsafety warning, traffic management and driver assistance systems. Vehicular IP in Wireless Access in Vehicular Environments (VIP-WAVE)has characterized the IP configuration for extended andnon-extended IP services, and amobilitymanagement scheme supportedby Proxy Mobile IPv6 over WAVE.As the vehicular networks are formed even in remote areas with inadequate power source, the units have power constraints which are overcome by power control in the proposed system .The objective of the paper is to improve the quality of the network by providing internet accesswith transmit power control along which the distance between the RSU and on-board vehicular units(OBU)is determined i.e., power consumption is reduced when at least distance. Hence the RSU provides Distance Cautious Internet Protocol (DCIP) to the OBU for internet access.This paper analyses the WAVE standard and its support of IP based applications, and proposesDistance Cautious Internet Protocol in WAVE(DCIP-WAVE)

    Internet-wide geo-networking problem statement

    Get PDF
    This document describes the need of specifying Internet-wide location-aware forwarding protocol solutions that provide packet routing using geographical positions for packet transport

    Cryptographic security mechanism of the next generation digital tachograph system

    Get PDF
    JRC is in the process of evaluating the impact of update of the cryptographic security mechanisms for the next generation Digital Tachograph. The purpose of this document is to give background information about the cryptographic security mechanisms and vulnerabilities regarding the security mechanisms of the current Digital Tachograph System along with suggestions for the next generation Digital Tachograph security mechanisms. This document can be referred as an important reference to update the technical appendixes of the Tachograph regulation.JRC.G.7-Digital Citizen Securit
    • …
    corecore