112 research outputs found

    Benchmarking and Comparing Popular Visual SLAM Algorithms

    Full text link
    This paper contains the performance analysis and benchmarking of two popular visual SLAM Algorithms: RGBD-SLAM and RTABMap. The dataset used for the analysis is the TUM RGBD Dataset from the Computer Vision Group at TUM. The dataset selected has a large set of image sequences from a Microsoft Kinect RGB-D sensor with highly accurate and time-synchronized ground truth poses from a motion capture system. The test sequences selected depict a variety of problems and camera motions faced by Simultaneous Localization and Mapping (SLAM) algorithms for the purpose of testing the robustness of the algorithms in different situations. The evaluation metrics used for the comparison are Absolute Trajectory Error (ATE) and Relative Pose Error (RPE). The analysis involves comparing the Root Mean Square Error (RMSE) of the two metrics and the processing time for each algorithm. This paper serves as an important aid in the selection of SLAM algorithm for different scenes and camera motions. The analysis helps to realize the limitations of both SLAM methods. This paper also points out some underlying flaws in the used evaluation metrics.Comment: 7 pages, 4 figure

    Visual SLAM using straight lines

    Get PDF
    The present thesis is focuses on the problem of Simultaneous Localisation and Mapping (SLAM) using only visual data (VSLAM). This means to concurrently estimate the position of a moving camera and to create a consistent map of the environment. Since implementing a whole VSLAM system is out of the scope of a degree thesis, the main aim is to improve an existing visual SLAM system by complementing the commonly used point features with straight line primitives. This enables more accurate localization in environments with few feature points, like corridors. As a foundation for the project, ScaViSLAM by Strasdat et al. is used, which is a state-of-the-art real-time visual SLAM framework. Since it currently only supports Stereo and RGB-D systems, implementing a Monocular approach will be researched as well as an integration of it as a ROS package in order to deploy it on a mobile robot. For the experimental results, the Care-O-bot service robot developed by Fraunhofer IPA will be used

    A primer on autonomous aerial vehicle design

    Get PDF
    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomousMAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.H.H.G. Coppejans performed this work as part of his Master’s degree in Computer Engineering, under the supervision of H.C. Myburgh. This work is the combination of three research assignments in the form of an exam assignment. Each assignment was thoroughly reviewed and graded by H.C. Myburgh, who also provided detailed feedback, which H.H.G Coppejans incorporated in the final draft.http://www.mdpi.com/journal/sensorsam201

    Motion Planning of Intelligent Robots

    Get PDF
    Robotics is a fast growing industry that is used in everyday life. One of the most popular is intelligent mobile robots that are used for basic conventional use. The purpose of this project is to use the Turtlebot 2 to map and navigate its environment, while avoiding obstacles. Also to incorporate human machine interaction by using gesture control. This report details the research, setup, and programming process of the robot

    Sensors, SLAM and Long-term Autonomy: A Review

    Get PDF
    Simultaneous Localization and Mapping, commonly known as SLAM, has been an active research area in the field of Robotics over the past three decades. For solving the SLAM problem, every robot is equipped with either a single sensor or a combination of similar/different sensors. This paper attempts to review, discuss, evaluate and compare these sensors. Keeping an eye on future, this paper also assesses the characteristics of these sensors against factors critical to the long-term autonomy challenge

    DELIBOT WITH SLAM IMPLEMENTATION

    Get PDF
    This paper describes and discusses a research work on "DeliBOT – A Mobile Robot with Implementation of SLAM utilizing Computer Vision/Machine Learning Techniques". The principle objective is to study about the utilization of Kinect in mobile robotics and use it to assemble an integrated system framework equipped for building a map of environment, and localizing mobile robot with respect to the map using visual cues. There were four principle work stages. The initial step was studying and testing solutions for mapping and navigation with a RGB-D sensor, the Kinect. The accompanying stage was implementing a system framework equipped for identifying and localizing objects from the point cloud given by the Kinect, permitting the execution of further errands on the system framework, i.e. considering the computational load. The third step was identifying the landmarks and the improvement they can present in the framework. At last, the joining of the previous modules was led and experimental evaluation and validation of the integrated system. The demand of substitution of human by a robot is winding up noticeably more probable eager these days because of the likelihood of less mistakes that the robot apparently makes. Amid the previous couple of years, the technology turn out to be more accurate and legitimate outcomes with less errors, and researches started to consolidate more sensors. By utilizing accessible sensors, robot will perceive and identify environment it is in and makes map. Additionally, robot will have element of itself locating inside environment. Robot fundamental operations are identification of objects and localization for conduction of the services. Robot conduct appropriate path planning and avoidance of object by setting a target or determining goal [1]. Because of the outstanding research and robotics applications in almost every segments of life of human's, from space surveillance to health-care, solution is created for autonomous mobile robots direct tasks excluding human intervention in indoor environment [2], a few applications like cleaning facilities and transportation fields. Robot navigation in environment that is safe that performs profoundly, require environment map. Since in the greater part of applications in real-life map is not given, exploration algorithm is used

    Learning to Fly by Crashing

    Full text link
    How do you learn to navigate an Unmanned Aerial Vehicle (UAV) and avoid obstacles? One approach is to use a small dataset collected by human experts: however, high capacity learning algorithms tend to overfit when trained with little data. An alternative is to use simulation. But the gap between simulation and real world remains large especially for perception problems. The reason most research avoids using large-scale real data is the fear of crashes! In this paper, we propose to bite the bullet and collect a dataset of crashes itself! We build a drone whose sole purpose is to crash into objects: it samples naive trajectories and crashes into random objects. We crash our drone 11,500 times to create one of the biggest UAV crash dataset. This dataset captures the different ways in which a UAV can crash. We use all this negative flying data in conjunction with positive data sampled from the same trajectories to learn a simple yet powerful policy for UAV navigation. We show that this simple self-supervised model is quite effective in navigating the UAV even in extremely cluttered environments with dynamic obstacles including humans. For supplementary video see: https://youtu.be/u151hJaGKU

    Development of a ground robot for indoor SLAM using Low‐Cost LiDAR and remote LabVIEW HMI

    Get PDF
    The simultaneous localization and mapping problem (SLAM) is crucial to autonomous navigation and robot mapping. The main purpose of this thesis is to develop a ground robot that implements SLAM to test the performance of the low‐cost RPLiDAR A1M8 by DFRobot. The HectorSLAM package, available in ROS was used with a Raspberry Pi to implement SLAM and build maps. These maps are sent to a remote desktop via TCP/IP communication to be displayed on a LabVIEW HMI where the user can also control robot. The LabVIEW HMI and the project in its entirety is intended to be as easy to use as possible to the layman, with many processes being automated to make this possible. The quality of the maps created by HectorSLAM and the RPLiDAR were evaluated both qualitatively and quanitatively to determine how useful the low‐cost LiDAR can be for this application. It is hoped that the apparatus developed in this project will be used with drones in the future for 3D mapping

    Towards real-time 3D sound sources mapping with linear microphone arrays

    Full text link
    © 2017 IEEE. In this paper, we present a method for real-time 3D sound sources mapping using an off-the-shelf robotic perception sensor equipped with a linear microphone array. Conventional approaches to map sound sources in 3D scenarios use dedicated 3D microphone arrays, as this type of arrays provide two degrees of freedom (DOF) observations. Our method addresses the problem of 3D sound sources mapping using a linear microphone array, which only provides one DOF observations making the estimation of the sound sources location more challenging. In the proposed method, multi hypotheses tracking is combined with a new sound source parametrisation to provide with a good initial guess for an online optimisation strategy. A joint optimisation is carried out to estimate 6 DOF sensor poses and 3 DOF landmarks together with the sound sources locations. Additionally, a dedicated sensor model is proposed to accurately model the noise of the Direction of Arrival (DOA) observation when using a linear microphone array. Comprehensive simulation and experimental results show the effectiveness of the proposed method. In addition, a real-time implementation of our method has been made available as open source software for the benefit of the community
    corecore