1,421 research outputs found

    A Stereo Vision Framework for 3-D Underwater Mosaicking

    Get PDF

    Deep Neural Network Architectures and Learning Methodologies for Classification and Application in 3D Reconstruction

    Get PDF
    In this work we explore two different scenarios of 3D reconstruction. The first, urban scenes, is approached using a deep learning network trained to identify structurally important classes within aerial imagery of cities. The network was trained using data taken from ISPRS benchmark dataset of the city of Vaihingen. Using the segmented maps generated by the network we can proceed to more accurately reconstruct the scenes by a process of clustering and then class specific model generation. The second scenario is that of underwater scenes. We use two separate networks to first identify caustics and then remove them from a scene. Data was generated synthetically as real world datasets for this subject are extremely hard to produce. Using the generated caustic free image we can then reconstruct the scene with more precision and accuracy through a process of structure from motion. We investigate different deep learning architectures and parameters for both scenarios. Our results are evaluated to be efficient and effective by comparing them with online benchmarks and alternative reconstruction attempts. We conclude by discussing the limitations of problem specific datasets and our potential research into the generation of datasets through the use of Generative-Adverserial-Networks

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    A virtual object point model for the calibration of underwater stereo cameras to recover accurate 3D information

    Get PDF
    The focus of this thesis is on recovering accurate 3D information from underwater images. Underwater 3D reconstruction differs significantly from 3D reconstruction in air due to the refraction of light. In this thesis, the concepts of stereo 3D reconstruction in air get extended for underwater environments by an explicit consideration of refractive effects with the aid of a virtual object point model. Within underwater stereo 3D reconstruction, the focus of this thesis is on the refractive calibration of underwater stereo cameras

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Semantic Segmentation for Real-World Applications

    Get PDF
    En visión por computador, la comprensión de escenas tiene como objetivo extraer información útil de una escena a partir de datos de sensores. Por ejemplo, puede clasificar toda la imagen en una categoría particular o identificar elementos importantes dentro de ella. En este contexto general, la segmentación semántica proporciona una etiqueta semántica a cada elemento de los datos sin procesar, por ejemplo, a todos los píxeles de la imagen o, a todos los puntos de la nube de puntos. Esta información es esencial para muchas aplicaciones de visión por computador, como conducción, aplicaciones médicas o robóticas. Proporciona a los ordenadores una comprensión sobre el entorno que es necesaria para tomar decisiones autónomas.El estado del arte actual de la segmentación semántica está liderado por métodos de aprendizaje profundo supervisados. Sin embargo, las condiciones del mundo real presentan varias restricciones para la aplicación de estos modelos de segmentación semántica. Esta tesis aborda varios de estos desafíos: 1) la cantidad limitada de datos etiquetados disponibles para entrenar modelos de aprendizaje profundo, 2) las restricciones de tiempo y computación presentes en aplicaciones en tiempo real y/o en sistemas con poder computacional limitado, y 3) la capacidad de realizar una segmentación semántica cuando se trata de sensores distintos de la cámara RGB estándar.Las aportaciones principales en esta tesis son las siguientes:1. Un método nuevo para abordar el problema de los datos anotados limitados para entrenar modelos de segmentación semántica a partir de anotaciones dispersas. Los modelos de aprendizaje profundo totalmente supervisados lideran el estado del arte, pero mostramos cómo entrenarlos usando solo unos pocos píxeles etiquetados. Nuestro enfoque obtiene un rendimiento similar al de los modelos entrenados con imágenescompletamente etiquetadas. Demostramos la relevancia de esta técnica en escenarios de monitorización ambiental y en dominios más generales.2. También tratando con datos de entrenamiento limitados, proponemos un método nuevo para segmentación semántica semi-supervisada, es decir, cuando solo hay una pequeña cantidad de imágenes completamente etiquetadas y un gran conjunto de datos sin etiquetar. La principal novedad de nuestro método se basa en el aprendizaje por contraste. Demostramos cómo el aprendizaje por contraste se puede aplicar a la tarea de segmentación semántica y mostramos sus ventajas, especialmente cuando la disponibilidad de datos etiquetados es limitada logrando un nuevo estado del arte.3. Nuevos modelos de segmentación semántica de imágenes eficientes. Desarrollamos modelos de segmentación semántica que son eficientes tanto en tiempo de ejecución, requisitos de memoria y requisitos de cálculo. Algunos de nuestros modelos pueden ejecutarse en CPU a altas velocidades con alta precisión. Esto es muy importante para configuraciones y aplicaciones reales, ya que las GPU de gama alta nosiempre están disponibles.4. Nuevos métodos de segmentación semántica con sensores no RGB. Proponemos un método para la segmentación de nubes de puntos LiDAR que combina operaciones de aprendizaje eficientes tanto en 2D como en 3D. Logra un rendimiento de segmentación excepcional a velocidades realmente rápidas. También mostramos cómo mejorar la robustez de estos modelos al abordar el problema de sobreajuste y adaptaciónde dominio. Además, mostramos el primer trabajo de segmentación semántica con cámaras de eventos, haciendo frente a la falta de datos etiquetados.Estas contribuciones aportan avances significativos en el campo de la segmentación semántica para aplicaciones del mundo real. Para una mayor contribución a la comunidad cientfíica, hemos liberado la implementación de todas las soluciones propuestas.----------------------------------------In computer vision, scene understanding aims at extracting useful information of a scene from raw sensor data. For instance, it can classify the whole image into a particular category (i.e. kitchen or living room) or identify important elements within it (i.e., bottles, cups on a table or surfaces). In this general context, semantic segmentation provides a semantic label to every single element of the raw data, e.g., to all image pixels or to all point cloud points.This information is essential for many applications relying on computer vision, such as AR, driving, medical or robotic applications. It provides computers with understanding about the environment needed to make autonomous decisions, or detailed information to people interacting with the intelligent systems. The current state of the art for semantic segmentation is led by supervised deep learning methods.However, real-world scenarios and conditions introduce several challenges and restrictions for the application of these semantic segmentation models. This thesis tackles several of these challenges, namely, 1) the limited amount of labeled data available for training deep learning models, 2) the time and computation restrictions present in real time applications and/or in systems with limited computational power, such as a mobile phone or an IoT node, and 3) the ability to perform semantic segmentation when dealing with sensors other than the standard RGB camera.The general contributions presented in this thesis are following:A novel approach to address the problem of limited annotated data to train semantic segmentation models from sparse annotations. Fully supervised deep learning models are leading the state-of-the-art, but we show how to train them by only using a few sparsely labeled pixels in the training images. Our approach obtains similar performance than models trained with fully-labeled images. We demonstrate the relevance of this technique in environmental monitoring scenarios, where it is very common to have sparse image labels provided by human experts, as well as in more general domains. Also dealing with limited training data, we propose a novel method for semi-supervised semantic segmentation, i.e., when there is only a small number of fully labeled images and a large set of unlabeled data. We demonstrate how contrastive learning can be applied to the semantic segmentation task and show its advantages, especially when the availability of labeled data is limited. Our approach improves state-of-the-art results, showing the potential of contrastive learning in this task. Learning from unlabeled data opens great opportunities for real-world scenarios since it is an economical solution. Novel efficient image semantic segmentation models. We develop semantic segmentation models that are efficient both in execution time, memory requirements, and computation requirements. Some of our models able to run in CPU at high speed rates with high accuracy. This is very important for real set-ups and applications since high-end GPUs are not always available. Building models that consume fewer resources, memory and time, would increase the range of applications that can benefit from them. Novel methods for semantic segmentation with non-RGB sensors.We propose a novel method for LiDAR point cloud segmentation that combines efficient learning operations both in 2D and 3D. It surpasses state-of-the-art segmentation performance at really fast rates. We also show how to improve the robustness of these models tackling the overfitting and domain adaptation problem. Besides, we show the first work for semantic segmentation with event-based cameras, coping with the lack of labeled data. To increase the impact of this contributions and ease their application in real-world settings, we have made available an open-source implementation of all proposed solutions to the scientific community.<br /
    corecore