124 research outputs found

    A novel outlier removal method for two-dimensional radar odometry

    Get PDF
    Autonomous navigation of platforms in complex environments has a key role in many applications. However, the environmental conditions could negatively affect the performance of electro-optical sensors. Hence, the idea of using radar odometry has been recently developed. However, it suffers from the presence of outliers in the scene as its electro-optical counterparts. This work presents a method to classify radar echoes as inliers or outliers for two-dimensional radar odometry, based on their range rate and bearing angle. The range rate and bearing angle are in fact combined to give a classification value, different for each target. At each acquisition time, the median of all classification values is computed. Since classification values of stationary targets, i.e. the inliers, cluster around the median, while moving targets, i.e. the outliers, exhibit larger distance from the median, stationary targets and moving targets can be separated. This is also useful for Sense-and-Avoid purposes. The method has been tested in simulated scenario to show effectiveness in detecting outliers and in real case scenario to demonstrate significant improvement in reconstruction of trajectory of platform, keeping the final error around 10% of the travelled distance. Further improvement is envisaged by integrating the method in the target tracking strategy

    GPS-Denied Navigation Using Synthetic Aperture Radar

    Get PDF
    In most modern navigation systems, GPS is used to determine the precise location of the vehicle; however, GPS signals can easily be blocked, jammed, or spoofed. These signals can be blocked by canyons or tall buildings. Additionally, adversaries can transmit signals that either make GPS signals difficult to interpret or that imitate real GPS signals and cause a navigation system to think it is somewhere other than its true location. GPS-denied (GPS-D) navigation is the process of navigating in the absence of GPS. Many methods of performing GPS-D navigation have been proposed and explored. One such method is to use synthetic aperture radar (SAR) to provide information lost in the absence of GPS. SAR is a technique that uses radar to form images. To create high-quality SAR images, precise location information must be used. This thesis explores using the quality of SAR images to improve position accuracy. First, a method of measuring the quality of a SAR image is determined and tested. Next, a GPS-D algorithm is developed that uses this measure of SAR image quality. The algorithm is then tested on multiple sets of SAR data. The results show that the algorithm performs variably depending on the data set and the parameters of the algorithm

    Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    Get PDF
    Modern communication systems provide myriad opportunities for passive radar applications. OFDM is a popular waveform used widely in wireless communication networks today. Understanding the structure of these networks becomes critical in future passive radar systems design and concept development. This research develops collection and signal processing models to produce passive SAR ground images using OFDM communication networks. The OFDM-based WiMAX network is selected as a relevant example and is evaluated as a viable source for radar ground imaging. The monostatic and bistatic phase history models for OFDM are derived and validated with experimental single dimensional data. An airborne passive collection model is defined and signal processing approaches are proposed providing practical solutions to passive SAR imaging scenarios. Finally, experimental SAR images using general OFDM and WiMAX waveforms are shown to validate the overarching signal processing concept

    Cognitive radar network design and applications

    Get PDF
    PhD ThesisIn recent years, several emerging technologies in modern radar system design are attracting the attention of radar researchers and practitioners alike, noteworthy among which are multiple-input multiple-output (MIMO), ultra wideband (UWB) and joint communication-radar technologies. This thesis, in particular focuses upon a cognitive approach to design these modern radars. In the existing literature, these technologies have been implemented on a traditional platform in which the transmitter and receiver subsystems are discrete and do not exchange vital radar scene information. Although such radar architectures benefit from these mentioned technological advances, their performance remains sub-optimal due to the lack of exchange of dynamic radar scene information between the subsystems. Consequently, such systems are not capable to adapt their operational parameters “on the fly”, which is in accordance with the dynamic radar environment. This thesis explores the research gap of evaluating cognitive mechanisms, which could enable modern radars to adapt their operational parameters like waveform, power and spectrum by continually learning about the radar scene through constant interactions with the environment and exchanging this information between the radar transmitter and receiver. The cognitive feedback between the receiver and transmitter subsystems is the facilitator of intelligence for this type of architecture. In this thesis, the cognitive architecture is fused together with modern radar systems like MIMO, UWB and joint communication-radar designs to achieve significant performance improvement in terms of target parameter extraction. Specifically, in the context of MIMO radar, a novel cognitive waveform optimization approach has been developed which facilitates enhanced target signature extraction. In terms of UWB radar system design, a novel cognitive illumination and target tracking algorithm for target parameter extraction in indoor scenarios has been developed. A cognitive system architecture and waveform design algorithm has been proposed for joint communication-radar systems. This thesis also explores the development of cognitive dynamic systems that allows the fusion of cognitive radar and cognitive radio paradigms for optimal resources allocation in wireless networks. In summary, the thesis provides a theoretical framework for implementing cognitive mechanisms in modern radar system design. Through such a novel approach, intelligent illumination strategies could be devised, which enable the adaptation of radar operational modes in accordance with the target scene variations in real time. This leads to the development of radar systems which are better aware of their surroundings and are able to quickly adapt to the target scene variations in real time.Newcastle University, Newcastle upon Tyne: University of Greenwich

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Rapidly deployable, self forming, wireless networks for maritime interdiction operations

    Get PDF
    The term "Maritime Interdiction Operations" usually refers to Visit, Board, Search and Seizure (VBSS) operations executed today all over the world. These operations are conducted as a part of the maritime law enforcement policy of each country inside their respective territorial waters or as a part of the homeland security requirements as they are mandated today by the global war against terrorism. Very often lately, they are conducted by allied maritime forces in international waters as well. Although such operations might seem quite simple in execution, the global war against terrorism has dramatically increased their level of complexity. In the past, searching cargo ships for illegal or contraband cargo was not that complicated or that important for national security, but now, searching for non-proliferation, radiological or bio-chemical material, as well as for possible terrorists among the crew members of a ship, is a very complex operation that cannot tolerate mistakes or omissions. This thesis examines the requirements posed by a boarding team, either from the navy or the law enforcement community, on information flow from and to them, in order to enhance their situational awareness and decision making capability during Maritime Interdiction Operations. That information flow is provided by several wireless network technologies, implemented during field trials, as part of the NPS CENETIX (Center for Network Innovation and Experimentation) lab s maritime subset of experimentation. During these field trials, a wireless extension of the internet is deployed to the sea, allowing the boarding team to access information and collaborate with remotely located experts and respective operational commands, the technical aspects, the benefits and shortcomings of the utilized technologies and collaborative tools are screened against the maritime war fighter's operational requirements.http://archive.org/details/rapidlydeployabl109452647Approved for public release; distribution is unlimited

    A Study in GPS-Denied Navigation Using Synthetic Aperture Radar

    Get PDF
    In modern navigation systems, GPS is vital to accurately piloting a vehicle. This is especially true in autonomous vehicles, such as UAVs, which have no pilot. Unfortunately, GPS signals can be easily jammed or spoofed. For example, canyons and urban cities create an environment where the sky is obstructed and make GPS signals unreliable. Additionally, hostile individuals can transmit personal signals intended to block or spoof GPS signals. In these situations, it is important to find a means of navigation that doesn’t rely on GPS. Navigating without GPS means that other types of sensors or instruments must be used to replace the information lost from GPS. Some examples of additional sensors include cameras, altimeters, magnetometers, and radar. The work presented in this thesis shows how radar can be used to navigate without GPS. Specifically, synthetic aperture radar (SAR) is used, which is a method of processing radar data to form images of a landscape similar to images captured using a camera. SAR presents its own unique set of benefits and challenges. One major benefit of SAR is that it can produce images of an area even at night or through cloud cover. Additionally, SAR can image a wide swath of land at an angle that would be difficult for a camera to achieve. However, SAR is more computationally complex than other imaging sensors. Image quality is also highly dependent on the quality of navigation information available. In general, SAR requires that good navigation data be had in order to form SAR images. The research here explores the reverse problem where SAR images are formed without good navigation data and then good navigation data is inferred from the images. This thesis performs feasibility studies and real data implementations that show how SAR can be used in navigation without the presence of GPS. Derivations and background materials are provided. Validation methods and additional discussions are provided on the results of each portion of research

    SYNTHETIC APERTURE RADAR PROCESSING USING UWB OFDM SIGNALS

    Get PDF

    ULTRALIGHT RADAR FOR SMALL AND MICRO-UAV NAVIGATION

    Get PDF
    This paper presents a radar approach to navigation of small and micro Unmanned Aerial Vehicles (UAV) in environments challenging for common sensors. A technique based on radar odometry is briefly explained and schemes for complete integration with other sensors are proposed. The focus of the paper is set on ultralight radars and interpretation of outputs of such sensor when dealing with autonomous navigation in complex scenario. The experimental setup used to analyse the proposed approach comprises one multi-rotor UAV and one ultralight commercial radar. Results from flight tests in which both forward-only motion and mixed motion are presented and analysed, providing a reference for understanding outputs of radar in complex scenarios. The radar odometry solution is compared with ground truth provided by GPS sensor
    corecore