31,245 research outputs found

    Real-time transaction scheduling in database systems

    Get PDF
    A database system supporting a real-time application, which can be called "a real-time database system (RTDBS)", has to provide real-time information to the executing transactions. Each RTDB transaction is associated with a timing constraint, usually in the form of a deadline. Efficient resource scheduling algorithms and concurrency control protocols are required to schedule the transactions so as to satisfy both timing constraints and data consistency requirements. In this paper,† † An earlier version of this paper was published in the Proceedings of ACM Computer Science Conference '92. we concentrate on the concurrency control problem in RTDBSs. Our work has two basic goals: real-time performance evaluation of existing concurrency control approaches in RTDBSs, and proposing new concurrency control protocols with improved performance. One of the new protocols is locking-based, and it prevents the priority inversion problem‡ by scheduling the data lock requests based on prioritizing data items. The second new protocol extends the basic timestamp-ordering method by involving real-time priorities of transactions in the timestamp assignment procedure. Performance of the protocols is evaluated through simulations by using a detailed model of a single-site RTDBS. The relative performance of the protocols is examined as a function of transaction load, data contention (which is determined by a number of system parameters) and resource contention. The protocols are also tested under various real-time transaction processing environments. The performance of the proposed protocols appears to be good, especially under conditions of high transaction load and high data contention. © 1994

    Research issues in real-time database systems

    Get PDF
    Cataloged from PDF version of article.Today's real-time systems are characterized by managing large volumes of data. Efficient database management algorithms for accessing and manipulating data are required to satisfy timing constraints of supported applications. Real-time database systems involve a new research area investigating possible ways of applying database systems technology to real-time systems. Management of real-time information through a database system requires the integration of concepts from both real-time systems and database systems. Some new criteria need to be developed to involve timing constraints of real-time applications in many database systems design issues, such as transaction/query processing, data buffering, CPU, and IO scheduling. In this paper, a basic understanding of the issues in real-time database systems is provided and the research efforts in this area are introduced. Different approaches to various problems of real-time database systems are briefly described, and possible future research directions are discussed

    Research issues in real-time database systems. Survey paper

    Get PDF
    Today's real-time systems are characterized by managing large volumes of data. Efficient database management algorithms for accessing and manipulating data are required to satisfy timing constraints of supported applications. Real-time database systems involve a new research area investigating possible ways of applying database systems technology to real-time systems. Management of real-time information through a database system requires the integration of concepts from both real-time systems and database systems. Some new criteria need to be developed to involve timing constraints of real-time applications in many database systems design issues, such as transaction/query processing, data buffering, CPU, and IO scheduling. In this paper, a basic understanding of the issues in real-time database systems is provided and the research efforts in this area are introduced. Different approaches to various problems of real-time database systems are briefly described, and possible future research directions are discussed. © 1995

    Processing real-time transactions in a replicated database system

    Get PDF
    A database system supporting a real-time application has to provide real-time information to the executing transactions. Each real-time transaction is associated with a timing constraint, typically in the form of a deadline. It is difficult to satisfy all timing constraints due to the consistency requirements of the underlying database. In scheduling the transactions it is aimed to process as many transactions as possible within their deadlines. Replicated database systems possess desirable features for real-time applications, such as a high level of data availability, and potentially improved response time for queries. On the other hand, multiple copy updates lead to a considerable overhead due to the communication required among the data sites holding the copies. In this paper, we investigate the impact of storing multiple copies of data on satisfying the timing constraints of real-time transactions. A detailed performance model of a distributed database system is employed in evaluating the effects of various workload parameters and design alternatives on the system performance. The performance is expressed in terms of the fraction of satisfied transaction deadlines. A comparison of several real-time concurrency control protocols, which are based on different approaches in involving timing constraints of transactions in scheduling, is also provided in performance experiments. © 1994 Kluwer Academic Publishers

    Evaluation of a client-server real-time database system

    Get PDF
    A real-time database system (RTDBS) can be defined as a database system where transactions are associated with real-time constraints. In this paper, we investigate various performance issues in a RTDBS constructed on a client-server system architecture. In a client-server database management system the whole database is stored on the server disks, and copies of database items can be cached in the client memories. We provide a detailed simulation model of a client-server RTDBS, and present the initial results of a performance work that evaluates the effects of various workload parameters and design alternatives. Index Terms - Real-time database systems, client-server architecture, transaction scheduling, timing constraints

    Scheduling Issues in Real-Time Systems

    Get PDF
    The most important objective of real-time systems is to fulfill time-critical missions in satisfying their application requirements and timing constraints. Software utilities can analyze real-time tasks and extract their characteristics and requirements for assisting the systems to guarantee schedulability. Real- time scheduling is the core of the real-time system design. It should allow real-time systems to exhibit predictable timing correctness regardless of possible uncertainty in run-time environments. In this dissertation, we study the problem of scheduling real-time tasks with resource and fault-tolerance requirements. For tasks with resource requirements, two types of platforms are examined: multiprocessor hard real-time systems and real-time database systems; for task with fault-tolerance requirements, we focus on hard real-time systems. We investigate preemptive priority-based scheduling for tasks with resource requirements in context of hard real-time systems. Rate-monotonic and earliest deadline first priority assignment strategies can meet deadlines if the schedulability conditions are satisfied. We propose resource control protocols, for these scheduling strategies, based on the concepts of priority inheritance and priority ceiling and describe schedulability conditions for meeting deadlines. Real-time database systems have different objectives for transaction scheduling. Minimizing miss ratio usually is the major concern. We study the significance of the knowledge of execution time in system performance and propose a class of optimistic concurrency control protocols using the knowledge of execution time. Our simulation results indicate that the knowledge of execution time substantially improve system performance. Fault-tolerance is an ability to maintain system in a safe and stable state such that the real-time application functions correctly and its timing constraints are satisfied even in the presence of faults. We develop a scheduling algorithm which attempts to build as many fault-tolerant tasks as possible into a schedule. We approximate system reliability by Markov chain models and illustrate the applicability of the proposed reliability models. We compare the proposed fault-tolerance scheduling approach with the basic fault-tolerance scheduling schemes and the simulation results show that our method provides better reliability than the basic scheduling schemes. (Also cross-referenced as UMIACS-TR-95-73

    Conclusions from the European Roadmap on Control of Computing Systems

    Get PDF
    The use of control-based methods for resource management in real-time computing and communication systems has gained a substantial interest recently. Applications areas include performance control of web-servers, dynamic resource management in embedded systems, traffic control in communication networks, transaction management in database servers, error control in software systems, and autonomic computing. Within the European EU/IST FP6 Network of Exellence ARTIST2 on Embedded System Design a roadmap on Control of Real-Time Computing Systems has recently been completed. The focus of the roadmap is how flexibility, adaptivity, performance and robustness can be achieved in a real-time computing or communication system through the use of control theory. The item that is controlled is in most cases the allocation of computing and communication resources, e.g., the distribution or scheduling of CPU time among different competing tasks, jobs, requests, or transactions, or the communication resources in a network. Due to this, control of computing systems also goes under the name of feedback scheduling. The roadmap is divided into six research areas: control of server systems, control of CPU resources, control of communication networks, error control of software systems, feedback scheduling of control systems, and control middleware. For each area an overview is given and challenges for future research are stated. The aim of this position paper is to summarize the conclusions concerning these research challenges. In this paper, we will only cover the first four of the areas above. A preliminary version of the roadmap can be found on http://www.control.lth.se/user/karlerik/roadmap1.pd

    Priority-based speculative locking protocols for distributed real-time database systems.

    Get PDF
    With globalization, multinational networked organizations' need for exchange of information has led to the emergence of applications that are heavily dependent on globally distributed and constantly changing data. Such applications include, stock trading, Computer Aided Design and Manufacturing (CAD/CAM), online reservation systems, telecommunication systems, e-commerce systems and real time navigation systems. These applications introduce the need for distributed real time database systems (DRTDBS) which must access/manipulate data spread over a network in addition to meeting the real time constraints and maintaining database consistency. In order to improve performance within DRTDBS, attention needs to be given to concurrency control mechanism and transaction's time constraints. A number of protocols have been suggested in recent years to address these issues. One of the proposed protocols, Speculative Locking (SL), has especially demonstrated the capability of improving performance within Distributed Database System by allowing parallelism between conflicting transactions without violating serializability. This research extends SL by giving it the capability of taking a transaction's priority into consideration when scheduling transactions. In addition, a nested transaction model is used to access the data that is distributed across the network. We propose two new Priority-based Speculative Locking protocols: (1) Preemptive Speculative Locking (PSL) and (2) Priority inheritance Speculative Locking (PiSL). PSL extends SL by allowing any incoming higher priority transaction to preempt and abort any lower priority transaction in case of lock conflict thus giving the higher priority transaction a chance to meet the deadline. PiSL, on the other hand, attempts to prevent any wasted work by avoiding preemption by a higher priority transaction. Instead, the lower priority transaction inherits the priority of the blocked transaction. This gives both transactions an opportunity to meet their deadline whenever possible.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b159863
    corecore