1,770 research outputs found

    Gait Asymmetry Post-Stroke: Determining Valid and Reliable Methods Using a Single Accelerometer Located on the Trunk

    Get PDF
    Asymmetry is a cardinal symptom of gait post-stroke that is targeted during rehabilitation. Technological developments have allowed accelerometers to be a feasible tool to provide digital gait variables. Many acceleration-derived variables are proposed to measure gait asymmetry. Despite a need for accurate calculation, no consensus exists for what is the most valid and reliable variable. Using an instrumented walkway (GaitRite) as the reference standard, this study compared the validity and reliability of multiple acceleration-derived asymmetry variables. Twenty-five post-stroke participants performed repeated walks over GaitRite whilst wearing a tri-axial accelerometer (Axivity AX3) on their lower back, on two occasions, one week apart. Harmonic ratio, autocorrelation, gait symmetry index, phase plots, acceleration, and jerk root mean square were calculated from the acceleration signals. Test–retest reliability was calculated, and concurrent validity was estimated by comparison with GaitRite. The strongest concurrent validity was obtained from step regularity from the vertical signal, which also recorded excellent test–retest reliability (Spearman’s rank correlation coefficients (rho) = 0.87 and Intraclass correlation coefficient (ICC21) = 0.98, respectively). Future research should test the responsiveness of this and other step asymmetry variables to quantify change during recovery and the effect of rehabilitative interventions for consideration as digital biomarkers to quantify gait asymmetry

    Instrumenting gait with an accelerometer: A system and algorithm examination

    Get PDF
    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to the laboratory until relatively recently. The application of an inexpensive body worn sensor with appropriate gait algorithms (BWM) is an attractive alternative and offers the potential to assess gait in any setting. In this study we investigated the use of a low-cost BWM, compared to laboratory reference using a robust testing protocol in both younger and older adults. We observed that the BWM is a valid tool for estimating total step count and mean spatio-temporal gait characteristics however agreement for variability and asymmetry results was poor. We conducted a detailed investigation to explain the poor agreement between systems and determined it was due to inherent differences between the systems rather than inability of the sensor to measure the gait characteristics. The results highlight caution in the choice of reference system for validation studies. The BWM used in this study has the potential to gather longitudinal (real-world) spatio-temporal gait data that could be readily used in large lifestyle-based intervention studies, but further refinement of the algorithm(s) is required

    Gait monitoring system for patients with Parkinson’s disease

    Get PDF
    Background: Wearable monitoring devices based on inertial sensors have the potential to be used as a quantitative method in clinical practice for continuous assessment of gait disabilities in Parkinson’s disease (PD). Methods: This manuscript introduces a new gait monitoring system adapted to patients with PD, based on a wearable monitoring device. To eliminate inter- and intra-subject variability, the computational method was based on heuristic rules with adaptive thresholds and ranges and a motion compensation strategy. The experimental trials involved repeated measurements of walking trials from two cross-sectional studies: the first study was performed in order to validate the effectiveness of the system against a robust 3D motion analysis with 10 healthy subjects; and the second-one aimed to validate our approach against a well-studied wearable IMU-based system on a hospital environment with 20 patients with PD. Results: The proposed system proved to be efficient (Experiment I: sensitivity = 95,09% and accuracy = 93,64%; Experiment II: sensitivity = 99,53% and accuracy = 97,42%), time-effective (Experiment I: earlies = 13,71 ms and delays = 12,91 ms; Experiment II: earlies = 12,94 ms and delays = 12,71 ms), user and user-motion adaptable and a low computational-load strategy for real-time gait events detection. Further, it was measured the percentage of absolute error classified with a good acceptability (Experiment I: 3,02 ≤ ε%≤12,94; Experiment II: 2,81 ≤ ε%≤13,45). Lastly, regarding the measured gait parameters, it was observed a reflection of the typical levels of motor impairment for the different disease stages. Conclusion: The achieved outcomes enabled to verify that the proposed system can be suitable for gait analysis in the assistance and rehabilitation fields.This work was supported by FCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020, and under the Reference Scholarship under grant SFRH/BD/136569/2018

    Wearable inertial sensors for human movement analysis

    Get PDF
    Introduction: The present review aims to provide an overview of the most common uses of wearable inertial sensors in the field of clinical human movement analysis.Areas covered: Six main areas of application are analysed: gait analysis, stabilometry, instrumented clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment. Each area is analyzed both from a methodological and applicative point of view. The focus on the methodological approaches is meant to provide an idea of the computational complexity behind a variable/parameter/index of interest so that the reader is aware of the reliability of the approach. The focus on the application is meant to provide a practical guide for advising clinicians on how inertial sensors can help them in their clinical practice.Expert commentary: Less expensive and more easy to use than other systems used in human movement analysis, wearable sensors have evolved to the point that they can be considered ready for being part of routine clinical routine

    Prediction of Fall Risk Among Community-Dwelling Older Adults Using a Wearable System

    Get PDF
    Falls are among the most common cause of decreased mobility and independence in older adults and rank as one of the most severe public health problems with frequent fatal consequences. In the present study, gait characteristics from 171 community-dwelling older adults were evaluated to determine their predictive ability for future falls using a wearable system. Participants wore a wearable sensor (inertial measurement unit, IMU) affixed to the sternum and performed a 10-m walking test. Measures of gait variability, complexity, and smoothness were extracted from each participant, and prospective fall incidence was evaluated over the following 6-months. Gait parameters were refined to better represent features for a random forest classifier for the fall-risk classification utilizing three experiments. The results show that the best-trained model for faller classification used both linear and nonlinear gait parameters and achieved an overall 81.6 ± 0.7% accuracy, 86.7 ± 0.5% sensitivity, 80.3 ± 0.2% specificity in the blind test. These findings augment the wearable sensor\u27s potential as an ambulatory fall risk identification tool in community-dwelling settings. Furthermore, they highlight the importance of gait features that rely less on event detection methods, and more on time series analysis techniques. Fall prevention is a critical component in older individuals’ healthcare, and simple models based on gait-related tasks and a wearable IMU sensor can determine the risk of future falls

    A Review on Fall Prediction and Prevention System for Personal Devices: Evaluation and Experimental Results

    Get PDF
    Injuries due to unintentional falls cause high social cost in which several systems have been developed to reduce them. Recently, two trends can be recognized. Firstly, the market is dominated by fall detection systems, which activate an alarm after a fall occurrence, but the focus is moving towards predicting and preventing a fall, as it is the most promising approach to avoid a fall injury. Secondly, personal devices, such as smartphones, are being exploited for implementing fall systems, because they are commonly carried by the user most of the day. This paper reviews various fall prediction and prevention systems, with a particular interest to the ones that can rely on the sensors embedded in a smartphone, i.e., accelerometer and gyroscope. Kinematic features obtained from the data collected from accelerometer and gyroscope have been evaluated in combination with different machine learning algorithms. An experimental analysis compares the evaluated approaches by evaluating their accuracy and ability to predict and prevent a fall. Results show that tilt features in combination with a decision tree algorithm present the best performance

    Lower trunk motion and speed-dependence during walking

    Get PDF
    Abstract Background There is a limited understanding about how gait speed influences the control of upper body motion during walking. Therefore, the primary purpose of this study was to examine how gait speed influences healthy individual's lower trunk motion during overground walking. The secondary purpose was to assess if Principal Component Analysis (PCA) can be used to gain further insight into postural responses that occur at different walking speeds. Methods Thirteen healthy subjects (23 ± 3 years) performed 5 straight-line walking trials at self selected slow, preferred, and fast walking speeds. Accelerations of the lower trunk were measured in the anterior-posterior (AP), vertical (VT), and mediolateral (ML) directions using a triaxial accelerometer. Stride-to-stride acceleration amplitude, regularity and repeatability were examined with RMS acceleration, Approximate Entropy and Coefficient of Multiple determination respectively. Coupling between acceleration directions were calculated using Cross Approximate Entropy. PCA was used to reveal the dimensionality of trunk accelerations during walking at slow and preferred speeds, and preferred and fast speeds. Results RMS acceleration amplitude increased with gait speed in all directions. ML and VT trunk accelerations had less signal regularity and repeatability during the slow compared to preferred speed. However, stride-to-stride acceleration regularity and repeatability did not differ between the preferred and fast walking speed conditions, partly due to an increase in coupling between frontal plane accelerations. The percentage of variance accounted for by each trunk acceleration Principal Component (PC) did not differ between grouped slow and preferred, and preferred and fast walking speed acceleration data. Conclusion The main finding of this study was that walking at speeds slower than preferred primarily alters lower trunk accelerations in the frontal plane. Despite greater amplitudes of trunk acceleration at fast speeds, the lack of regularity and repeatability differences between preferred and fast speeds suggest that features of trunk motion are preserved between the same conditions. While PCA indicated that features of trunk motion are preserved between slow and preferred, and preferred and fast speeds, the discriminatory ability of PCA to detect speed-dependent differences in walking patterns is limited compared to measures of signal regularity, repeatability, and coupling.</p
    • …
    corecore