3,742 research outputs found

    Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning

    Get PDF
    UIDB/00066/2020 POCI-01-0247-FEDER-034072The advent of Industry 4.0 has shown the tremendous transformative potential of combining artificial intelligence, cyber-physical systems and Internet of Things concepts in industrial settings. Despite this, data availability is still a major roadblock for the successful adoption of data-driven solutions, particularly concerning deep learning approaches in manufacturing. Specifically in the quality control domain, annotated defect data can often be costly, time-consuming and inefficient to obtain, potentially compromising the viability of deep learning approaches due to data scarcity. In this context, we propose a novel method for generating annotated synthetic training data for automated quality inspections of structural adhesive applications, validated in an industrial cell for automotive parts. Our approach greatly reduces the cost of training deep learning models for this task, while simultaneously improving their performance in a scarce manufacturing data context with imbalanced training sets by 3.1% ([email protected]). Additional results can be seen at https://ricardosperes.github.io/simulation-synth-adhesive/.publishersversionpublishe

    Automated Defect Detection of Screws in the Manufacturing Industry Using Convolutional Neural Networks

    Get PDF
    Defect detection in industrial production processes is an important and necessary part of quality control. Many defects can occur during the manufacturing process, causing high manufacturing costs. Thus the inspection of screws, which represent an indispensable element of many mechanical components, is a critical process. To reduce manufacturing costs and increase efficiency, a reliable method for inspection is Deep Learning. It can help simplify the process of quality control and increase the velocity and volume of detected defects in screws. This approach uses a CNN model to classify non-defective and defective screws with different types of defects. Instead of manual quality control methods, which can be easily biased, our CNN approach is accurate, cost-efficient, and fast, with an accuracy of over 97 percent. With this approach corresponding to industrial production processes, different defects in screws and non-defective screws can be classified from images according to a real-world industrial inspection scenario

    A real-time defect detection in printed circuit boards applying deep learning

    Get PDF
    Inspection of defects in the printed circuit boards (PCBs) has both safety and economic significance in the 4.0 industrial manufacturing. Nevertheless, it is still a challenging problem to be studied in-depth due to the complexity of the PCB layouts and the shrinking down tendency of the electronic component size. In this paper, a real-time automated supervision algorithm is proposed to test the PCBs quality among different scenarios. The density of the PCBs layout and the complexity on the surface are analyzed based on deep learning and image feature extraction algorithms. To be more detailed, the ORB feature and the Brute-force matching method are utilized to match perfectly the input images with the PCB templates. After transferring images by aiding the RANSAC algorithm, a hybrid method using modern computer vision algorithms is developed to segment defective areas on the PCBs surface. Then, by applying the enhanced Residual Network –50, the proposed algorithm can classify the groove defects on the surface mount technology electronic components which minimum size up to 1x3 mm. After the training process, the proposed system is capable to categorize various types of overproduced, recycled, and cloned PCBs. The speed of the quality testing operation maintains at a high level with an average precision rate up to 96.29 % in case of good brightness conditions. Finally, the computational experiments demonstrate that the proposed system based on deep learning can obtain superior results and it outperforms several existing works in terms of speed, precision, and robustnes

    Generative adversarial networks for data augmentation in structural adhesive inspection

    Get PDF
    UIDB/- 00066/2020 POCI-01-0247-FEDER-034072The technological advances brought forth by the Industry 4.0 paradigm have renewed the disruptive potential of artificial intelligence in the manufacturing sector, building the data-driven era on top of concepts such as Cyber-Physical Systems and the Internet of Things. However, data availability remains a major challenge for the success of these solutions, particularly concerning those based on deep learning approaches. Specifically in the quality inspection of structural adhesive applications, found commonly in the automotive domain, defect data with sufficient variety, volume and quality is generally costly, time-consuming and inefficient to obtain, jeopardizing the viability of such approaches due to data scarcity. To mitigate this, we propose a novel approach to generate synthetic training data for this application, leveraging recent breakthroughs in training generative adversarial networks with limited data to improve the performance of automated inspection methods based on deep learning, especially for imbalanced datasets. Preliminary results in a real automotive pilot cell show promise in this direction, with the approach being able to generate realistic adhesive bead images and consequently object detection models showing improved mean average precision at different thresholds when trained on the augmented dataset. For reproducibility purposes, the model weights, configurations and data encompassed in this study are made publicly available.publishersversionpublishe

    Efficient and Accurate Segmentation of Defects in Industrial CT Scans

    Get PDF
    Industrial computed tomography (CT) is an elementary tool for the non-destructive inspection of cast light-metal or plastic parts. A comprehensive testing not only helps to ensure the stability and durability of a part, it also allows reducing the rejection rate by supporting the optimization of the casting process and to save material (and weight) by producing equivalent but more filigree structures. With a CT scan it is theoretically possible to locate any defect in the part under examination and to exactly determine its shape, which in turn helps to draw conclusions about its harmfulness. However, most of the time the data quality is not good enough to allow segmenting the defects with simple filter-based methods which directly operate on the gray-values—especially when the inspection is expanded to the entire production. In such in-line inspection scenarios the tight cycle times further limit the available time for the acquisition of the CT scan, which renders them noisy and prone to various artifacts. In recent years, dramatic advances in deep learning (and convolutional neural networks in particular) made even the reliable detection of small objects in cluttered scenes possible. These methods are a promising approach to quickly yield a reliable and accurate defect segmentation even in unfavorable CT scans. The huge drawback: a lot of precisely labeled training data is required, which is utterly challenging to obtain—particularly in the case of the detection of tiny defects in huge, highly artifact-afflicted, three-dimensional voxel data sets. Hence, a significant part of this work deals with the acquisition of precisely labeled training data. Firstly, we consider facilitating the manual labeling process: our experts annotate on high-quality CT scans with a high spatial resolution and a high contrast resolution and we then transfer these labels to an aligned ``normal'' CT scan of the same part, which holds all the challenging aspects we expect in production use. Nonetheless, due to the indecisiveness of the labeling experts about what to annotate as defective, the labels remain fuzzy. Thus, we additionally explore different approaches to generate artificial training data, for which a precise ground truth can be computed. We find an accurate labeling to be crucial for a proper training. We evaluate (i) domain randomization which simulates a super-set of reality with simple transformations, (ii) generative models which are trained to produce samples of the real-world data distribution, and (iii) realistic simulations which capture the essential aspects of real CT scans. Here, we develop a fully automated simulation pipeline which provides us with an arbitrary amount of precisely labeled training data. First, we procedurally generate virtual cast parts in which we place reasonable artificial casting defects. Then, we realistically simulate CT scans which include typical CT artifacts like scatter, noise, cupping, and ring artifacts. Finally, we compute a precise ground truth by determining for each voxel the overlap with the defect mesh. To determine whether our realistically simulated CT data is eligible to serve as training data for machine learning methods, we compare the prediction performance of learning-based and non-learning-based defect recognition algorithms on the simulated data and on real CT scans. In an extensive evaluation, we compare our novel deep learning method to a baseline of image processing and traditional machine learning algorithms. This evaluation shows how much defect detection benefits from learning-based approaches. In particular, we compare (i) a filter-based anomaly detection method which finds defect indications by subtracting the original CT data from a generated ``defect-free'' version, (ii) a pixel-classification method which, based on densely extracted hand-designed features, lets a random forest decide about whether an image element is part of a defect or not, and (iii) a novel deep learning method which combines a U-Net-like encoder-decoder-pair of three-dimensional convolutions with an additional refinement step. The encoder-decoder-pair yields a high recall, which allows us to detect even very small defect instances. The refinement step yields a high precision by sorting out the false positive responses. We extensively evaluate these models on our realistically simulated CT scans as well as on real CT scans in terms of their probability of detection, which tells us at which probability a defect of a given size can be found in a CT scan of a given quality, and their intersection over union, which gives us information about how precise our segmentation mask is in general. While the learning-based methods clearly outperform the image processing method, the deep learning method in particular convinces by its inference speed and its prediction performance on challenging CT scans—as they, for example, occur in in-line scenarios. Finally, we further explore the possibilities and the limitations of the combination of our fully automated simulation pipeline and our deep learning model. With the deep learning method yielding reliable results for CT scans of low data quality, we examine by how much we can reduce the scan time while still maintaining proper segmentation results. Then, we take a look on the transferability of the promising results to CT scans of parts of different materials and different manufacturing techniques, including plastic injection molding, iron casting, additive manufacturing, and composed multi-material parts. Each of these tasks comes with its own challenges like an increased artifact-level or different types of defects which occasionally are hard to detect even for the human eye. We tackle these challenges by employing our simulation pipeline to produce virtual counterparts that capture the tricky aspects and fine-tuning the deep learning method on this additional training data. With that we can tailor our approach towards specific tasks, achieving reliable and robust segmentation results even for challenging data. Lastly, we examine if the deep learning method, based on our realistically simulated training data, can be trained to distinguish between different types of defects—the reason why we require a precise segmentation in the first place—and we examine if the deep learning method can detect out-of-distribution data where its predictions become less trustworthy, i.e. an uncertainty estimation

    The Platform for non-metallic pipes defects recognition. Design and Implementation

    Full text link
    This paper describes a prototype software and hardware platform to provide support to field operators during the inspection of surface defects of non-metallic pipes. Inspection is carried out by video filming defects created on the same surface in real-time using a "smart" helmet device and other mobile devices. The work focuses on the detection and recognition of the defects which appears as colored iridescence of reflected light caused by the diffraction effect arising from the presence of internal stresses in the inspected material. The platform allows you to carry out preliminary analysis directly on the device in offline mode, and, if a connection to the network is established, the received data is transmitted to the server for post-processing to extract information about possible defects that were not detected at the previous stage. The paper presents a description of the stages of design, formal description, and implementation details of the platform. It also provides descriptions of the models used to recognize defects and examples of the result of the work

    Deep CNN-Based Automated Optical Inspection for Aerospace Components

    Get PDF
    ABSTRACT The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is widely employed using automated industrial quality control systems. In the aerospace manufacturing industry, composite materials are extensively applied as structural components in civilian and military aircraft. To ensure the quality of the product and high reliability, manual inspection and traditional automatic optical inspection have been employed to identify the defects throughout production and maintenance. These inspection techniques have several limitations such as tedious, time- consuming, inconsistent, subjective, labor intensive, expensive, etc. To make the operation effective and efficient, modern automated optical inspection needs to be preferred. In this dissertation work, automatic defect detection techniques are tested on three levels using a novel aerospace composite materials image dataset (ACMID). First, classical machine learning models, namely, Support Vector Machine and Random Forest, are employed for both datasets. Second, deep CNN-based models, such as improved ResNet50 and MobileNetV2 architectures are trained on ACMID datasets. Third, an efficient defect detection technique that combines the features of deep learning and classical machine learning model is proposed for ACMID dataset. To assess the aerospace composite components, all the models are trained and tested on ACMID datasets with distinct sizes. In addition, this work investigates the scenario when defective and non-defective samples are scarce and imbalanced. To overcome the problems of imbalanced and scarce datasets, oversampling techniques and data augmentation using improved deep convolutional generative adversarial networks (DCGAN) are considered. Furthermore, the proposed models are also validated using one of the benchmark steel surface defects (SSD) dataset

    Defect detection using weakly supervised learning

    Full text link
    In many real-world scenarios, obtaining large amounts of labeled data can be a daunting task. Weakly supervised learning techniques have gained significant attention in recent years as an alternative to traditional supervised learning, as they enable training models using only a limited amount of labeled data. In this paper, the performance of a weakly supervised classifier to its fully supervised counterpart is compared on the task of defect detection. Experiments are conducted on a dataset of images containing defects, and evaluate the two classifiers based on their accuracy, precision, and recall. Our results show that the weakly supervised classifier achieves comparable performance to the supervised classifier, while requiring significantly less labeled data

    Automatic Error Detection in 3D Pritning using Computer Vision

    Get PDF
    During recent years Additive Manufacturing Technology, or 3D Printing, has become extremely popular. 3D printing is being actively used in fields ranging from rapid prototyping and rapid manufacturing to Bio-printing for tissue manufacturing. However, it is a very time consuming process as a single object, depending on its size and complexity, may take from only a couple of hours to several days to print. In many cases, errors occurs in the middle of a printing process due to misalignment of the 3D printed object, slicing errors or blocked filament extrusion, causing a complete failure of the process. During longer printing processes such errors may occur several hours before we are able to detect them, and a lot of time and material are wasted. If we are able to detect these errors automatically as they occur we may be able to interrupt the process and save both time and material. Severe damage may be caused to a 3D printer if layers of material are continuously added to an object that is misaligned or has detached from the build plate. In this thesis we investigate the possibilities of using traditional Computer Vision algorithms and image processing techniques to automatically detect these errors as they occur. We built a prototype using two different camera angles to analyze both the first layer from a top-down view and the subsequent layers by placing the second camera in front of the build plate. In one of the modules developed in our prototype we managed to compare the 3D printed bottom layer with a simulation of the same layer to detect deviations from the CAD model.Masteroppgave i Programutvikling samarbeid med HVLPROG399MAMN-PRO
    corecore