205 research outputs found

    Minimising variability in steel / weld fatigue data and developing robust durability design for automotive chassis applications.

    Get PDF
    Engineers often make use of component safety factors in order to ensure reliability and robustness of new products. To truly define a suitable safety factor for a given component, an understanding of the variability in the structural performance of the component is required, in addition to the variability in conditions of use. A large variation in either of these two factors can give rise to an overlap between the structural capability of a component and the limits of its service conditions. This may result in a situation where the component's structural capability fall below the in-service requirements, which could lead to catastrophic failure. Accurately defining the variability in the mechanical behaviour of High Strength Low Alloy (HSLA) steels used for automotive chassis & suspension applications can help design engineers decide on appropriate safety factors to avoid over-engineering products. By investigating the root-causes of this variability, the steel industry can also benefit from this research, as its findings can assist in reducing the variability of its steel products that arise during production. Variability in steel mechanical behaviour can be due to numerous factors including chemistries, processing temperatures, cooling patterns, and the strip thickness etc. By analysing the variability that exists in the mechanical properties, fatigue behaviour and thickness of strip steel, a prediction of the overall effect of variations within these parameters on manufactured components is possible. Understanding the relationship between material variability and the consistency of component structural capability is paramount for achieving robust and reliable designs. The current research attempts to uncover and present some of these relationships

    Human Reliability Assessment method applied to investigate human factors in NDT -- The case of the interpretation of radiograms in the French nuclear sector

    Full text link
    This communication reports on a study carried out in the context of the collaborative FOEHN project (Human and Organizational Factors in Non-Destructive Evaluation) supported by the French National Research Agency. The motivation of this project comes from the observation that human and Organizational factors (HOF) are not sufficiently considered by the NDT community. Its goal is to analyse and model the influence of the HOF on selected cases of study in the perspective of a better evaluation of the performance of inspections. The communication is focused on a radiographic test (RT) case of study in which it appeared that several successive inspections had failed to detect an existing in-service defect. The analysis and modelling of HOF related to interpretation of films has been achieved in the framework of the CREAM (Cognitive and Reliability and Error Analysis Method). A survey has been conducted during the training and the maintaining of the proficiency of NDT (Non Destructive Testing) operators. This was followed by a non-participant observation of operators on site and several individual interviews including a sample of people covering the main organizational and hierarchical roles (eg. project management, management, operations, invigilation). The exchange with the HOF experts resulted in a hierarchical analysis of ''radiogram interpretation'' tasks (31 sub-tasks) and a list of contextual and organizational factors that may affect the performance of interpretation of films by the operator. From such a description the CREAM method allows to determine critical tasks and probability of ``errors'' linked to a limited set of ``Common Performance Conditions'' (CPC). The first conclusions of this study are that the model CREAM seems well-adapted to the estimation of the impact of HOF on NDT performances. The next phases should be to apply it to other tasks (here only radiograph interpretation) and techniques. The expected benefit of this study is to provide tools for the evaluation and optimisation of NDT implementation.Comment: Internatonal conference Non-Destructive Examination (NDE) in Nuclear, Sustainable Nuclear Energy Technology Platorm (SNETP), Jun 2023, Sheffield - UK, United Kingdo

    Modelling, Test and Practice of Steel Structures

    Get PDF
    This reprint provides an international forum for the presentation and discussion of the latest developments in structural-steel research and its applications. The topics of this reprint include the modelling, testing and practice of steel structures and steel-based composite structures. A total of 17 high-quality, original papers dealing with all aspects of steel-structures research, including modelling, testing, and construction research on material properties, components, assemblages, connection, and structural behaviors, are included for publication

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    Proceedings of the Belgian-Dutch IABSE Young Engineers Colloquium 2019:YEC2019

    Get PDF
    The proceedings contain 35 papers. The topics discussed include: fatigue monitoring of railway bridges by means of virtual sensing; steel-supported glazed atrium roof between two adjacent existing buildings; the Boekelose bridge: an innovative structure; case study of rail-bridge interaction of a large span railway viaduct in riga; probabilistic approach to evaluate fatigue safety status in steel railway bridges; buckling design approach for unstiffened curved plates in uniform shear; finite element modeling of residual welding stresses in an orthotropic steel bridge component; uniformly loaded tensegrity bridge design via morphological indicators method; tensile and shear resistance of bolted connectors in steel-FRP hybrid beams; and parametric analysis of rib distortion induced stress concentration at rib-to-crossbeam joint.</p

    Novel Approaches for Structural Health Monitoring

    Get PDF
    The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field
    • …
    corecore