19,418 research outputs found

    Power-aware scheduling with effective task migration for real-time multicore embedded systems

    Full text link
    A major design issue in embedded systems is reducing the power consumption because batteries have a limited energy budget. For this purpose, several techniques such as dynamic voltage and frequency scaling (DVFS) or task migration are being used. DVFS allows reducing power by selecting the optimal voltage supply, whereas task migration achieves this effect by balancing the workload among cores. This paper focuses on power-aware scheduling allowing task migration to reduce energy consumption in multicore embedded systems implementing DVFS capabilities. To address energy savings, the devised schedulers follow two main rules: migrations are allowed at specific points of time and only one task is allowed to migrate each time. Two algorithms have been proposed working under real-time constraints. The simpler algorithm, namely, single option migration (SOM) only checks just one target core before performing a migration. In contrast, the multiple option migration (MOM) searches the optimal target core. In general, the MOM algorithm achieves better energy savings than the SOM algorithm, although differences are wider for a reduced number of cores and frequency/voltage levels. Moreover, the MOM algorithm reduces energy consumption as much as 40% over the worst fit algorithm.This work was supported by the Spanish MICINN, Consolider Programme and Plan E funds, as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04-01.March Cabrelles, JL.; Sahuquillo Borrás, J.; Petit Martí, SV.; Hassan Mohamed, H.; Duato Marín, JF. (2013). Power-aware scheduling with effective task migration for real-time multicore embedded systems. Concurrency and Computation: Practice and Experience. 25(14):1987-2001. doi:10.1002/cpe.2899S198720012514Euiseong Seo, Jinkyu Jeong, Seonyeong Park, & Joonwon Lee. (2008). Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors. IEEE Transactions on Parallel and Distributed Systems, 19(11), 1540-1552. doi:10.1109/tpds.2008.104March, J. L., Sahuquillo, J., Hassan, H., Petit, S., & Duato, J. (2011). A New Energy-Aware Dynamic Task Set Partitioning Algorithm for Soft and Hard Embedded Real-Time Systems. The Computer Journal, 54(8), 1282-1294. doi:10.1093/comjnl/bxr008AlEnawy, T. A., & Aydin, H. (s. f.). Energy-Aware Task Allocation for Rate Monotonic Scheduling. 11th IEEE Real Time and Embedded Technology and Applications Symposium. doi:10.1109/rtas.2005.20Intel atom processor microarchitecture www.intel.com/Marvell ARMADA TM 628 Marvell Semiconductor, Inc. Santa Clara, CA, USA http://www.marvell.com/company/press_kit/assets/Marvell_ARMADA_628_Release_FINAL3.pdfMcNairy, C., & Bhatia, R. (2005). Montecito: A Dual-Core, Dual-Thread Itanium Processor. IEEE Micro, 25(2), 10-20. doi:10.1109/mm.2005.34Kalla, R., Sinharoy, B., & Tendler, J. M. (2004). IBM power5 chip: a dual-core multithreaded processor. IEEE Micro, 24(2), 40-47. doi:10.1109/mm.2004.1289290Shah A Arm plans to add multithreading to chip design 2010 http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-designSchranzhofer, A., Chen, J.-J., & Thiele, L. (2010). Dynamic Power-Aware Mapping of Applications onto Heterogeneous MPSoC Platforms. IEEE Transactions on Industrial Informatics, 6(4), 692-707. doi:10.1109/tii.2010.2062192Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., & Valero, M. (2006). Predictable performance in SMT processors: synergy between the OS and SMTs. IEEE Transactions on Computers, 55(7), 785-799. doi:10.1109/tc.2006.108Fisher, N., & Baruah, S. (2008). The feasibility of general task systems with precedence constraints on multiprocessor platforms. Real-Time Systems, 41(1), 1-26. doi:10.1007/s11241-008-9054-5Buttazzo, G., Bini, E., & Yifan Wu. (2011). Partitioning Real-Time Applications Over Multicore Reservations. IEEE Transactions on Industrial Informatics, 7(2), 302-315. doi:10.1109/tii.2011.2123902Intel Pentium M processor datasheet INTEL Corp. Santa Clara, CA, USA 2004 http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdfChaparro, P., Gonzáles, J., Magklis, G., Cai, Q., & González, A. (2007). Understanding the Thermal Implications of Multi-Core Architectures. IEEE Transactions on Parallel and Distributed Systems, 18(8), 1055-1065. doi:10.1109/tpds.2007.1092WCET analysis project. WCET benchmark programs 2006 http://www.mrtc.mdh.se/projects/wcet

    ILP-based approaches to partitioning recurrent workloads upon heterogeneous multiprocessors

    Get PDF
    The problem of partitioning systems of independent constrained-deadline sporadic tasks upon heterogeneous multiprocessor platforms is considered. Several different integer linear program (ILP) formulations of this problem, offering different tradeoffs between effectiveness (as quantified by speedup bound) and running time efficiency, are presented

    Multi-resource management in embedded real-time systems

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis

    Task scheduling techniques for asymmetric multi-core systems

    Get PDF
    As performance and energy efficiency have become the main challenges for next-generation high-performance computing, asymmetric multi-core architectures can provide solutions to tackle these issues. Parallel programming models need to be able to suit the needs of such systems and keep on increasing the application’s portability and efficiency. This paper proposes two task scheduling approaches that target asymmetric systems. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application, or by finding the earliest executor of a task. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with two existing state-of the art heterogeneous schedulers and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45 in a real 8-core asymmetric system and up to 2.1 in a simulated 32-core asymmetric chip.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 610402 and from the EU’s H2020 Framework Programme (H2020/2014-2020) under grant agreement no 671697. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243).Peer ReviewedPostprint (author's final draft

    Model-based estimation and control methods for batch cooling crystallizers

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis
    • …
    corecore