1,737,369 research outputs found

    Recreating Daily life in Pompeii

    Full text link
    [EN] We propose an integrated Mixed Reality methodology for recreating ancient daily life that features realistic simulations of animated virtual human actors (clothes, body, skin, face) who augment real environments and re-enact staged storytelling dramas. We aim to go further from traditional concepts of static cultural artifacts or rigid geometrical and 2D textual augmentations and allow for 3D, interactive, augmented historical character-based event representations in a mobile and wearable setup. This is the main contribution of the described work as well as the proposed extensions to AR Enabling technologies: a VR/AR character simulation kernel framework with real-time, clothed virtual humans that are dynamically superimposed on live camera input, animated and acting based on a predefined, historically correct scenario. We demonstrate such a real-time case study on the actual site of ancient Pompeii.The work presented has been supported by the Swiss Federal Office for Education and Science and the EU IST programme, in frame of the EU IST LIFEPLUS 34545 and EU ICT INTERMEDIA 38417 projects.Magnenat-Thalmann, N.; Papagiannakis, G. (2010). Recreating Daily life in Pompeii. Virtual Archaeology Review. 1(2):19-23. https://doi.org/10.4995/var.2010.4679OJS192312P. MILGRAM, F. KISHINO, (1994) "A Taxonomy of Mixed Reality Visual Displays", IEICE Trans. Information Systems, vol. E77-D, no. 12, pp. 1321-1329R. AZUMA, Y. BAILLOT, R. BEHRINGER, S. FEINER, S. JULIER, B. MACINTYRE, (2001) "Recent Advances in Augmented Reality", IEEE Computer Graphics and Applications, November/December http://dx.doi.org/10.1109/38.963459D. STRICKER, P. DÄHNE, F. SEIBERT, I. CHRISTOU, L. ALMEIDA, N. IOANNIDIS, (2001) "Design and Development Issues for ARCHEOGUIDE: An Augmented Reality-based Cultural Heritage On-site Guide", EuroImage ICAV 3D Conference in Augmented Virtual Environments and Three-dimensional Imaging, Mykonos, Greece, 30 May-01 JuneW. WOHLGEMUTH, G. TRIEBFÜRST, (2000)"ARVIKA: augmented reality for development, production and service", DARE 2000 on Designing augmented reality environments, Elsinore, Denmark http://dx.doi.org/10.1145/354666.354688H. TAMURA, H. YAMAMOTO, A. KATAYAMA, (2001) "Mixed reality: Future dreams seen at the border between real and virtual worlds", Computer Graphics and Applications, vol.21, no.6, pp.64-70 http://dx.doi.org/10.1109/38.963462M. PONDER, G. PAPAGIANNAKIS, T. MOLET, N. MAGNENAT-THALMANN, D. THALMANN, (2003) "VHD++ Development Framework: Towards Extendible, Component Based VR/AR Simulation Engine Featuring Advanced Virtual Character Technologies", IEEE Computer Society Press, CGI Proceedings, pp. 96-104 http://dx.doi.org/10.1109/cgi.2003.1214453Archaeological Superintendence of Pompeii (2009), http://www.pompeiisites.orgG. PAPAGIANNAKIS, S. SCHERTENLEIB, B. O'KENNEDY , M. POIZAT, N.MAGNENAT-THALMANN, A. STODDART, D.THALMANN, (2005) "Mixing Virtual and Real scenes in the site of ancient Pompeii",Journal of CAVW, p 11-24, Volume 16, Issue 1, John Wiley and Sons Ltd, FebruaryEGGES, A., PAPAGIANNAKIS, G., MAGNENAT-THALMANN, N., (2007) "Presence and Interaction in Mixed Reality", The Visual Computer, Springer-Verlag Volume 23, Number 5, MaySEO H., MAGNENAT-THALMANN N. (2003), An Automatic Modeling of Human Bodies from Sizing Parameters. In ACM SIGGRAPH, Symposium on Interactive 3D Graphics, pp19-26, pp234. http://dx.doi.org/10.1145/641480.641487VOLINO P., MAGNENAT-THALMANN N. (2006), Resolving Surface Collisions through Intersection Contour Minimization. In ACM Transactions on Graphics (Siggraph 2006 proceedings), 25(3), pp 1154-1159. http://dx.doi.org/10.1145/1179352.1142007http://dx.doi.org/10.1145/1141911.1142007PAPAGIANNAKIS, G., SINGH, G., MAGNENAT-THALMANN, N., (2008) "A survey of mobile and wireless technologies for augmented reality systems", Journal of Computer Animation and Virtual Worlds, John Wiley and Sons Ltd, 19, 1, pp. 3-22, February http://dx.doi.org/10.1002/cav.22

    Operability, acceptability, and usefulness of a mobile app to track routine immunization performance in rural Pakistan: Interview study among vaccinators and key informants

    Get PDF
    Background: There has been a recent spate of mobile health (mHealth) app use for immunizations and other public health concerns in low- and middle-income countries. However, recent evidence has largely focused on app development or before-and-after effects on awareness or service coverage. There is little evidence on the factors that facilitate adoption of mHealth programs, which is critical to effectively embed digital technology into mainstream health systems. Objective: This study aimed to provide the qualitative experiences of frontline health staff and district managers while engaging with real-time digital technology to improve the coverage of routine childhood immunization in an underserved rural district in Pakistan. Methods: An Android-based app was iteratively developed and used for a 2-year period in 11 union councils of the Tando Muhammad Khan district, an underserved rural district with poor immunization coverage in Pakistan. We used iterative methods to examine the (1) acceptability and operability of the app, (2) validity of the collected data, and (3) use of the collected data. In addition, we collected the barriers and enablers for uptake of the mHealth app. Each of these topics was further explored related to changes in work as well as the enabling factors for and barriers to app use. In-depth interviews were conducted with the 26 vaccinators posted in the 11 union councils and 7 purposively selected key informants (government district managers) involved with the Expanded Program for Immunization. Findings were triangulated in line with the three broad research areas. Results: Digital immunization tracking was considered acceptable by vaccinators and district managers. Real-time immunization data were used to monitor vaccination volume, track children with incomplete vaccinations, develop outreach visit plans, correct existing microplans, and disburse a fuel allowance for outreach sessions. The validity of the app data was perceived to be superior to that of data from manual records. Ease of operability, satisfaction with data, personal recognition, links to field support, and a sense of empowerment served as powerful enablers. Taking twice the time to complete both manual and digital entries and outdated phones over time were considered constraints. An unintended knock-on effect was improved coordination and strengthening of Expanded Program for Immunization review platforms across district stakeholders through digitalized data. Conclusions: Embedding digital technology into mainstream health systems relies on use by both end users and district stakeholders. Ease of operability, satisfaction with data reliability, personal recognition, links to field support, and empowerment are powerful enablers, whereas improved coordination as a result of easy, transparent data access can be an important by-product of digitalization. Findings are relevant not only for wide-scale implementation of immunization tracking apps in Pakistan but also for informing the use of digital technology for results-based delivery by frontline health workers

    Robust moving horizon H∞ control of discrete time-delayed systems with interval time-varying delays

    Get PDF
    In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method

    BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking

    Full text link
    Data generation is a key issue in big data benchmarking that aims to generate application-specific data sets to meet the 4V requirements of big data. Specifically, big data generators need to generate scalable data (Volume) of different types (Variety) under controllable generation rates (Velocity) while keeping the important characteristics of raw data (Veracity). This gives rise to various new challenges about how we design generators efficiently and successfully. To date, most existing techniques can only generate limited types of data and support specific big data systems such as Hadoop. Hence we develop a tool, called Big Data Generator Suite (BDGS), to efficiently generate scalable big data while employing data models derived from real data to preserve data veracity. The effectiveness of BDGS is demonstrated by developing six data generators covering three representative data types (structured, semi-structured and unstructured) and three data sources (text, graph, and table data)

    Initial conditions, Discreteness and non-linear structure formation in cosmology

    Get PDF
    In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with P(0)=0P(0)=0, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on the dynamical evolution of gravitational clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G. Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st

    Optimisation of a Brownian dynamics algorithm for semidilute polymer solutions

    Full text link
    Simulating the static and dynamic properties of semidilute polymer solutions with Brownian dynamics (BD) requires the computation of a large system of polymer chains coupled to one another through excluded-volume and hydrodynamic interactions. In the presence of periodic boundary conditions, long-ranged hydrodynamic interactions are frequently summed with the Ewald summation technique. By performing detailed simulations that shed light on the influence of several tuning parameters involved both in the Ewald summation method, and in the efficient treatment of Brownian forces, we develop a BD algorithm in which the computational cost scales as O(N^{1.8}), where N is the number of monomers in the simulation box. We show that Beenakker's original implementation of the Ewald sum, which is only valid for systems without bead overlap, can be modified so that \theta-solutions can be simulated by switching off excluded-volume interactions. A comparison of the predictions of the radius of gyration, the end-to-end vector, and the self-diffusion coefficient by BD, at a range of concentrations, with the hybrid Lattice Boltzmann/Molecular Dynamics (LB/MD) method shows excellent agreement between the two methods. In contrast to the situation for dilute solutions, the LB/MD method is shown to be significantly more computationally efficient than the current implementation of BD for simulating semidilute solutions. We argue however that further optimisations should be possible.Comment: 17 pages, 8 figures, revised version to appear in Physical Review E (2012
    corecore