2,381 research outputs found

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Enabling Depth-driven Visual Attention on the iCub Humanoid Robot: Instructions for Use and New Perspectives

    Get PDF
    The importance of depth perception in the interactions that humans have within their nearby space is a well established fact. Consequently, it is also well known that the possibility of exploiting good stereo information would ease and, in many cases, enable, a large variety of attentional and interactive behaviors on humanoid robotic platforms. However, the difficulty of computing real-time and robust binocular disparity maps from moving stereo cameras often prevents from relying on this kind of cue to visually guide robots' attention and actions in real-world scenarios. The contribution of this paper is two-fold: first, we show that the Efficient Large-scale Stereo Matching algorithm (ELAS) by A. Geiger et al. 2010 for computation of the disparity map is well suited to be used on a humanoid robotic platform as the iCub robot; second, we show how, provided with a fast and reliable stereo system, implementing relatively challenging visual behaviors in natural settings can require much less effort. As a case of study we consider the common situation where the robot is asked to focus the attention on one object close in the scene, showing how a simple but effective disparity-based segmentation solves the problem in this case. Indeed this example paves the way to a variety of other similar applications

    Appearance-Based Gaze Estimation in the Wild

    Full text link
    Appearance-based gaze estimation is believed to work well in real-world settings, but existing datasets have been collected under controlled laboratory conditions and methods have been not evaluated across multiple datasets. In this work we study appearance-based gaze estimation in the wild. We present the MPIIGaze dataset that contains 213,659 images we collected from 15 participants during natural everyday laptop use over more than three months. Our dataset is significantly more variable than existing ones with respect to appearance and illumination. We also present a method for in-the-wild appearance-based gaze estimation using multimodal convolutional neural networks that significantly outperforms state-of-the art methods in the most challenging cross-dataset evaluation. We present an extensive evaluation of several state-of-the-art image-based gaze estimation algorithms on three current datasets, including our own. This evaluation provides clear insights and allows us to identify key research challenges of gaze estimation in the wild

    3D Face tracking and gaze estimation using a monocular camera

    Get PDF
    Estimating a user’s gaze direction, one of the main novel user interaction technologies, will eventually be used for numerous applications where current methods are becoming less effective. In this paper, a new method is presented for estimating the gaze direction using Canonical Correlation Analysis (CCA), which finds a linear relationship between two datasets defining the face pose and the corresponding facial appearance changes. Afterwards, iris tracking is performed by blob detection using a 4-connected component labeling algorithm. Finally, a gaze vector is calculated based on gathered eye properties. Results obtained from datasets and real-time input confirm the robustness of this metho
    corecore