1,051 research outputs found

    A Panoramic Study of Obstructive Sleep Apnea Detection Technologies

    Get PDF
    This study offers a literature research reference value for bioengineers and practitioner medical doctors. It could reduce research time and improve medical service efficiency regarding Obstructive Sleep Apnea (OSA) detection systems. Much of the past and the current apnea research, the vital signals features and parameters of the SA automatic detection are introduced.The applications for the earlier proposed systems and the related work on real-time and continuous monitoring of OSA and the analysis is given. The study concludes with an assessment of the current technologies highlighting their weaknesses and strengths which can set a roadmap for researchers and clinicians in this rapidly developing field of study

    Screening of Obstructive Sleep Apnea with Empirical Mode Decomposition of Pulse Oximetry

    Full text link
    Detection of desaturations on the pulse oximetry signal is of great importance for the diagnosis of sleep apneas. Using the counting of desaturations, an index can be built to help in the diagnosis of severe cases of obstructive sleep apnea-hypopnea syndrome. It is important to have automatic detection methods that allows the screening for this syndrome, reducing the need of the expensive polysomnography based studies. In this paper a novel recognition method based on the empirical mode decomposition of the pulse oximetry signal is proposed. The desaturations produce a very specific wave pattern that is extracted in the modes of the decomposition. Using this information, a detector based on properly selected thresholds and a set of simple rules is built. The oxygen desaturation index constructed from these detections produces a detector for obstructive sleep apnea-hypopnea syndrome with high sensitivity (0.8380.838) and specificity (0.8550.855) and yields better results than standard desaturation detection approaches.Comment: Accepted in Medical Engineering and Physic

    Eye-CU: Sleep Pose Classification for Healthcare using Multimodal Multiview Data

    Full text link
    Manual analysis of body poses of bed-ridden patients requires staff to continuously track and record patient poses. Two limitations in the dissemination of pose-related therapies are scarce human resources and unreliable automated systems. This work addresses these issues by introducing a new method and a new system for robust automated classification of sleep poses in an Intensive Care Unit (ICU) environment. The new method, coupled-constrained Least-Squares (cc-LS), uses multimodal and multiview (MM) data and finds the set of modality trust values that minimizes the difference between expected and estimated labels. The new system, Eye-CU, is an affordable multi-sensor modular system for unobtrusive data collection and analysis in healthcare. Experimental results indicate that the performance of cc-LS matches the performance of existing methods in ideal scenarios. This method outperforms the latest techniques in challenging scenarios by 13% for those with poor illumination and by 70% for those with both poor illumination and occlusions. Results also show that a reduced Eye-CU configuration can classify poses without pressure information with only a slight drop in its performance.Comment: Ten-page manuscript including references and ten figure

    Detection of Obstructive Sleep Apnea from ECG Signal using SVM based Grid Search

    Get PDF
    Obstructive Sleep Apnea is one common form of sleep apnea and is now tested by means of a process called Polysomnography which is time-consuming, expensive and also requires a human observer throughout the study of the subject which makes it inconvenient and new detection techniques are now being developed to overcome these difficulties. Heart rate variability has proven to be related to sleep apnea episodes and thus the features from the ECG signal can be used in the detection of sleep apnea. The proposed detection technique uses Support Vector Machines using Grid search algorithm and the classifier is trained using features based on heart rate variability derived from the ECG signal. The developed system is tested using the dataset and the results show that this classification system can recognize the disorder with an accuracy rate of 89%. Further, the use of the grid search algorithm has made this system a reliable and an accurate means for the classification of sleep apnea and can serve as a basis for the future development of its screening

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    Towards an accurate sleep apnea detection based on ECG signal: The quintessential of a wise feature selection

    Get PDF
    A wise feature selection from minute-to-minute Electrocardiogram (ECG) signal is a challenging task for many reasons, but mostly because of the promise of the accurate detection of clinical disorders, such as the sleep apnea. In this study, the ECG signal was modeled in order to obtain the Heart Rate Variability (HRV) and the ECG-Derived Respiration (EDR). Selected features techniques were used for benchmark with different classifiers such as Artificial Neural Networks (ANN) and Support Vector Machine(SVM), among others. The results evidence that the best accuracy was 82.12%, with a sensitivity and specificity of 88.41% and 72.29%, respectively. In addition, experiments revealed that a wise feature selection may improve the system accuracy. Therefore, the proposed model revealed to be reliable and simpler alternative to classical solutions for the sleep apnea detection, for example the ones based on the Polysomnography.info:eu-repo/semantics/publishedVersio

    Heart Diseases Diagnosis Using Artificial Neural Networks

    Get PDF
    Information technology has virtually altered every aspect of human life in the present era. The application of informatics in the health sector is rapidly gaining prominence and the benefits of this innovative paradigm are being realized across the globe. This evolution produced large number of patients’ data that can be employed by computer technologies and machine learning techniques, and turned into useful information and knowledge. This data can be used to develop expert systems to help in diagnosing some life-threating diseases such as heart diseases, with less cost, processing time and improved diagnosis accuracy. Even though, modern medicine is generating huge amount of data every day, little has been done to use this available data to solve challenges faced in the successful diagnosis of heart diseases. Highlighting the need for more research into the usage of robust data mining techniques to help health care professionals in the diagnosis of heart diseases and other debilitating disease conditions. Based on the foregoing, this thesis aims to develop a health informatics system for the classification of heart diseases using data mining techniques focusing on Radial Basis functions and emerging Neural Networks approach. The presented research involves three development stages; firstly, the development of a preliminary classification system for Coronary Artery Disease (CAD) using Radial Basis Function (RBF) neural networks. The research then deploys the deep learning approach to detect three different types of heart diseases i.e. Sleep Apnea, Arrhythmias and CAD by designing two novel classification systems; the first adopt a novel deep neural network method (with Rectified Linear unit activation) design as the second approach in this thesis and the other implements a novel multilayer kernel machine to mimic the behaviour of deep learning as the third approach. Additionally, this thesis uses a dataset obtained from patients, and employs normalization and feature extraction means to explore it in a unique way that facilitates its usage for training and validating different classification methods. This unique dataset is useful to researchers and practitioners working in heart disease treatment and diagnosis. The findings from the study reveal that the proposed models have high classification performance that is comparable, or perhaps exceed in some cases, the existing automated and manual methods of heart disease diagnosis. Besides, the proposed deep-learning models provide better performance when applied on large data sets (e.g., in the case of Sleep Apnea), with reasonable performance with smaller data sets. The proposed system for clinical diagnoses of heart diseases, contributes to the accurate detection of such disease, and could serve as an important tool in the area of clinic support system. The outcome of this study in form of implementation tool can be used by cardiologists to help them make more consistent diagnosis of heart diseases
    • …
    corecore