177 research outputs found

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Towards the development of safe, collaborative robotic freehand ultrasound

    Get PDF
    The use of robotics in medicine is of growing importance for modern health services, as robotic systems have the capacity to improve upon human tasks, thereby enhancing the treatment ability of a healthcare provider. In the medical sector, ultrasound imaging is an inexpensive approach without the high radiation emissions often associated with other modalities, especially when compared to MRI and CT imaging respectively. Over the past two decades, considerable effort has been invested into freehand ultrasound robotics research and development. However, this research has focused on the feasibility of the application, not the robotic fundamentals, such as motion control, calibration, and contextual awareness. Instead, much of the work is concentrated on custom designed robots, ultrasound image generation and visual servoing, or teleoperation. Research based on these topics often suffer from important limitations that impede their use in an adaptable, scalable, and real-world manner. Particularly, while custom robots may be designed for a specific application, commercial collaborative robots are a more robust and economical solution. Otherwise, various robotic ultrasound studies have shown the feasibility of using basic force control, but rarely explore controller tuning in the context of patient safety and deformable skin in an unstructured environment. Moreover, many studies evaluate novel visual servoing approaches, but do not consider the practicality of relying on external measurement devices for motion control. These studies neglect the importance of robot accuracy and calibration, which allow a system to safely navigate its environment while reducing the imaging errors associated with positioning. Hence, while the feasibility of robotic ultrasound has been the focal point in previous studies, there is a lack of attention to what occurs between system design and image output. This thesis addresses limitations of the current literature through three distinct contributions. Given the force-controlled nature of an ultrasound robot, the first contribution presents a closed-loop calibration approach using impedance control and low-cost equipment. Accuracy is a fundamental requirement for high-quality ultrasound image generation and targeting. This is especially true when following a specified path along a patient or synthesizing 2D slices into a 3D ultrasound image. However, even though most industrial robots are inherently precise, they are not necessarily accurate. While robot calibration itself has been extensively studied, many of the approaches rely on expensive and highly delicate equipment. Experimental testing showed that this method is comparable in quality to traditional calibration using a laser tracker. As demonstrated through an experimental study and validated with a laser tracker, the absolute accuracy of a collaborative robot was improved to a maximum error of 0.990mm, representing a 58.4% improvement when compared to the nominal model. The second contribution explores collisions and contact events, as they are a natural by-product of applications involving physical human-robot interaction (pHRI) in unstructured environments. Robot-assisted medical ultrasound is an example of a task where simply stopping the robot upon contact detection may not be an appropriate reaction strategy. Thus, the robot should have an awareness of body contact location to properly plan force-controlled trajectories along the human body using the imaging probe. This is especially true for remote ultrasound systems where safety and manipulability are important elements to consider when operating a remote medical system through a communication network. A framework is proposed for robot contact classification using the built-in sensor data of a collaborative robot. Unlike previous studies, this classification does not discern between intended vs. unintended contact scenarios, but rather classifies what was involved in the contact event. The classifier can discern different ISO/TS 15066:2016 specific body areas along a human-model leg with 89.37% accuracy. Altogether, this contact distinction framework allows for more complex reaction strategies and tailored robot behaviour during pHRI. Lastly, given that the success of an ultrasound task depends on the capability of the robot system to handle pHRI, pure motion control is insufficient. Force control techniques are necessary to achieve effective and adaptable behaviour of a robotic system in the unstructured ultrasound environment while also ensuring safe pHRI. While force control does not require explicit knowledge of the environment, to achieve an acceptable dynamic behaviour, the control parameters must be tuned. The third contribution proposes a simple and effective online tuning framework for force-based robotic freehand ultrasound motion control. Within the context of medical ultrasound, different human body locations have a different stiffness and will require unique tunings. Through real-world experiments with a collaborative robot, the framework tuned motion control for optimal and safe trajectories along a human leg phantom. The optimization process was able to successfully reduce the mean absolute error (MAE) of the motion contact force to 0.537N through the evolution of eight motion control parameters. Furthermore, contextual awareness through motion classification can offer a framework for pHRI optimization and safety through predictive motion behaviour with a future goal of autonomous pHRI. As such, a classification pipeline, trained using the tuning process motion data, was able to reliably classify the future force tracking quality of a motion session with an accuracy of 91.82 %

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Models, algorithms and architectures for cooperative manipulation with aerial and ground robots

    Get PDF
    Les dernières années ont vu le développement de recherches portant sur l'interaction physique entre les robots aériens et leur environnement, accompagné de l'apparition de nombreux nouveaux systèmes mécaniques et approches de régulation. La communauté centrée autour de la robotique aérienne observe actuellement un déplacement de paradigmes des approches classiques de guidage, de navigation et de régulation vers des tâches moins triviales, telle le développement de l'interaction physique entre robots aériens et leur environnement. Ceci correspond à une extension des tâches dites de manipulation, du sol vers les airs. Cette thèse contribue au domaine de la manipulation aérienne en proposant un nouveau concept appelé MAGMaS, pour " Multiple Aerial Ground Manipulator System ". Les motivations qui ont conduites à l'association de manipulateurs terrestres et aériens pour effectuer des tâches de manipulation coopérative, résident dans une volonté d'exploiter leurs particularités respectives. Les manipulateurs terrestres apportant leur importante force et les manipulateurs aériens apportant leur vaste espace de travail. La première contribution de cette thèse présente une modélisation rigoureuse des MAGMaS. Les propriétés du système ainsi que ses possibles extensions sont discutées. Les méthodes de planning, d'estimation et de régulation nécessaire à l'exploitation des MAGMaS pour des tâches de manipulation collaborative sont dérivées. Ce travail propose d'exploiter les redondances des MAGMaS grâce à un algorithme optimal d'allocation de forces entre les manipulateurs. De plus, une méthode générale d'estimation de forces pour robots aériens est introduite. Toutes les techniques et les algorithmes présentés dans cette thèse sont intégrés dans une architecture globale, utilisée à la fois pour la simulation et la validation expérimentale. Cette architecture est en outre augmentée par l'addition d'une structure de télé-présence, afin de permettre l'opération à distances des MAGMaS. L'architecture générale est validée par une démonstration de levage de barre, qui est une application représentative des potentiels usages des MAGMaS. Une autre contribution relative au développement des MAGMaS consiste en une étude exploratoire de la flexibilité dans les objets manipulés par un MAGMaS. Un modèle du phénomène vibratoire est dérivé afin de mettre en exergue ses propriétés en termes de contrôle. La dernière contribution de cette thèse consiste en une étude exploratoire sur l'usage des actionneurs à raideur variable dans les robots aériens, dotant ces systèmes d'une compliance mécanique intrinsèque et de capacité de stockage d'énergie. Les fondements théoriques sont associés à la synthèse d'un contrôleur non-linéaire. L'approche proposée est validée par le biais d'expériences reposant sur l'intégration d'un actionneur à raideur variable léger sur un robot aérien.In recent years, the subject of physical interaction for aerial robots has been a popular research area with many new mechanical designs and control approaches being proposed. The aerial robotics community is currently observing a paradigm shift from classic guidance, navigation, and control tasks towards more unusual tasks, for example requesting aerial robots to physically interact with the environment, thus extending the manipulation task from the ground into the air. This thesis contributes to the field of aerial manipulation by proposing a novel concept known has Multiple Aerial-Ground Manipulator System or MAGMaS, including what appears to be the first experimental demonstration of a MAGMaS and opening a new route of research. The motivation behind associating ground and aerial robots for cooperative manipulation is to leverage their respective particularities, ground robots bring strength while aerial robots widen the workspace of the system. The first contribution of this work introduces a meticulous system model for MAGMaS. The system model's properties and potential extensions are discussed in this work. The planning, estimation and control methods which are necessary to exploit MAGMaS in a cooperative manipulation tasks are derived. This works proposes an optimal control allocation scheme to exploit the MAGMaS redundancies and a general model-based force estimation method is presented. All of the proposed techniques reported in this thesis are integrated in a global architecture used for simulations and experimental validation. This architecture is extended by the addition of a tele-presence framework to allow remote operations of MAGMaS. The global architecture is validated by robust demonstrations of bar lifting, an application that gives an outlook of the prospective use of the proposed concept of MAGMaS. Another contribution in the development of MAGMaS consists of an exploratory study on the flexibility of manipulated loads. A vibration model is derived and exploited to showcase vibration properties in terms of control. The last contribution of this thesis consists of an exploratory study on the use of elastic joints in aerial robots, endowing these systems with mechanical compliance and energy storage capabilities. Theoretical groundings are associated with a nonlinear controller synthesis. The proposed approach is validated by experimental work which relies on the integration of a lightweight variable stiffness actuator on an aerial robot
    • …
    corecore