117 research outputs found

    Opportunistic lookahead routing procedure for delay tolerant networks

    Get PDF
    Delay Tolerant Networks are wireless networks that have sporadic network connectivity, thus rendering the existence of instantaneous end-to-end paths from a source to a destination difficult or impossible. Hence, in such networks, message delivery relies heavily on the store-and-forward paradigm to route messages. However, limited knowledge of the contact times between the nodes poses a big challenge to effective forwarding of messages. In this thesis, we discuss several aspects of routing in DTNs and present one algorithm and three variants for addressing the routing problem in DTNs: (i) the Look-ahead Protocol, in which the forwarding decision at each node to its immediate or one-hop neighbor is based on the position of the packet / message in the queue of the neighboring node(ii) Backpressure based lookahead, where a lookahead factor is introduced with the basic backpressure equation. This factor takes into account the difference of queue lengths from the neighbors, (iii) a two-step lookahead protocol, where the forwarding decision is sometimes based on the instantaneous one-hop neighbors of the neighboring node. We also present simulation results of these protocols and compare these results to the existing standard routing protocols for DTNs. In all the algorithms, we look to optimize the amount of network bandwidth used by looking one step ahead before making a forwarding decision. By considering the queue in the neighboring nodes, the amount of network resources consumed decreases. The protocols that we propose may come with a slightly higher hop-count per packet than most protocols, but we have tried to maintain a comparable delivery ratio with the existing standard protocol

    Optimization and Learning in Energy Efficient Cognitive Radio System

    Get PDF
    Energy efficiency and spectrum efficiency are two biggest concerns for wireless communication. The constrained power supply is always a bottleneck to the modern mobility communication system. Meanwhile, spectrum resource is extremely limited but seriously underutilized. Cognitive radio (CR) as a promising approach could alleviate the spectrum underutilization and increase the quality of service. In contrast to traditional wireless communication systems, a distinguishing feature of cognitive radio systems is that the cognitive radios, which are typically equipped with powerful computation machinery, are capable of sensing the spectrum environment and making intelligent decisions. Moreover, the cognitive radio systems differ from traditional wireless systems that they can adapt their operating parameters, i.e. transmission power, channel, modulation according to the surrounding radio environment to explore the opportunity. In this dissertation, the study is focused on the optimization and learning of energy efficiency in the cognitive radio system, which can be considered to better utilize both the energy and spectrum resources. Firstly, drowsy transmission, which produces optimized idle period patterns and selects the best sleep mode for each idle period between two packet transmissions through joint power management and transmission power control/rate selection, is introduced to cognitive radio transmitter. Both the optimal solution by dynamic programming and flexible solution by reinforcement learning are provided. Secondly, when cognitive radio system is benefited from the theoretically infinite but unsteady harvested energy, an innovative and flexible control framework mainly based on model predictive control is designed. The solution to combat the problems, such as the inaccurate model and myopic control policy introduced by MPC, is given. Last, after study the optimization problem for point-to-point communication, multi-objective reinforcement learning is applied to the cognitive radio network, an adaptable routing algorithm is proposed and implemented. Epidemic propagation is studied to further understand the learning process in the cognitive radio network

    Decision-making for Vehicle Path Planning

    Get PDF
    This dissertation presents novel algorithms for vehicle path planning in scenarios where the environment changes. In these dynamic scenarios the path of the vehicle needs to adapt to changes in the real world. In these scenarios, higher performance paths can be achieved if we are able to predict the future state of the world, by learning the way it evolves from historical data. We are relying on recent advances in the field of deep learning and reinforcement learning to learn appropriate world models and path planning behaviors. There are many different practical applications that map to this model. In this dissertation we propose algorithms for two applications that are very different in domain but share important formal similarities: the scheduling of taxi services in a large city and tracking wild animals with an unmanned aerial vehicle. The first application models a centralized taxi dispatch center in a big city. It is a multivariate optimization problem for taxi time scheduling and path planning. The first goal here is to balance the taxi service demand and supply ratio in the city. The second goal is to minimize passenger waiting time and taxi idle driving distance. We design different learning models that capture taxi demand and destination distribution patterns from historical taxi data. The predictions are evaluated with real-world taxi trip records. The predicted taxi demand and destination is used to build a taxi dispatch model. The taxi assignment and re-balance is optimized by solving a Mixed Integer Programming (MIP) problem. The second application concerns animal monitoring using an unmanned aerial vehicle (UAV) to search and track wild animals in a large geographic area. We propose two different path planing approaches for the UAV. The first one is based on the UAV controller solving Markov decision process (MDP). The second algorithms relies on the past recorded animal appearances. We designed a learning model that captures animal appearance patterns and predicts the distribution of future animal appearances. We compare the proposed path planning approaches with traditional methods and evaluated them in terms of collected value of information (VoI), message delay and percentage of events collected

    Broadcasting in LTE-Advanced networks using multihop D2D communications

    Get PDF
    In an LTE-Advanced network, network-controlled Device-to-Device (D2D) communications can be combined in a multihop fashion to distribute broadcasts over user-defined (and possibly large) areas, with small latencies and occupying few resources. Such a service may be exploited for several purposes, (e.g. Internet of Things, Vehicular communications). Engineering a multihop D2D-based broadcast service requires working at both the application level on the User Equipment (UE) and at the resource-allocation level within the eNodeBs. This paper describes the necessary modifications at both the UE and the eNodeB, what the main issues are, and how to solve them efficiently. We evaluate the performance of the above service using system-level simulations, and demonstrate its advantages over standard broadcasting techniques

    A fast and reliable broadcast service for LTE-advanced exploiting multihop device-to-device transmissions

    Get PDF
    Several applications, from the Internet of Things for smart cities to those for vehicular networks, need fast and reliable proximity-based broadcast communications, i.e., the ability to reach all peers in a geographical neighborhood around the originator of a message, as well as ubiquitous connectivity. In this paper, we point out the inherent limitations of the LTE (Long-Term Evolution) cellular network, which make it difficult, if possible at all, to engineer such a service using traditional infrastructure-based communications. We argue, instead, that network-controlled device-to-device (D2D) communications, relayed in a multihop fashion, can efficiently support this service. To substantiate the above claim, we design a proximity-based broadcast service which exploits multihop D2D. We discuss the relevant issues both at the UE (User Equipment), which has to run applications, and within the network (i.e., at the eNodeBs), where suitable resource allocation schemes have to be enforced. We evaluate the performance of a multihop D2D broadcasting using system-level simulations, and demonstrate that it is fast, reliable and economical from a resource consumption standpoint

    Parallel and Distributed Immersive Real-Time Simulation of Large-Scale Networks

    Get PDF

    A mobile agent and message ferry mechanism based routing for delay tolerant network

    Get PDF
    Delay Tolerant Network (DTN) is a class of networks characterized by long delays, frequent disconnections and partitioning of communication paths between network nodes. Due to the frequent disconnection and network partitioning, the overall performance of the network will be deteriorated sharply. The problem is how to make the network fairly connected to optimize data routing and enhance the performance of a network. The aim of this study is to improve the performance of DTN by minimizing end-to-end delivery time and increasing message delivery ratio. Therefore, this research tackles the problem of intermittent connectivity and network partitioning by introducing Agents and Ferry Mechanism based Routing (AFMR). The AFMR comprises of two stages by applying two schemes: mobile agents and ferry mechanism. The agents' scheme is proposed to deal with intermittent connectivity and network partitioning by collecting the basic information about network connection such as signal strength, nodes position in the network and distance to the destination nodes to minimize end-to-end delivery time. The second stage is to increase the message delivery ratio by moving the nodes towards the path with available network connectivity based on agents' feedback. The AFMR is evaluated through simulations and the results are compared with those of Epidemic, PRoPHET and Message Ferry (MF). The findings demonstrate that AFMR is superior to all three, with respect to the average end-to-end delivery time, message delivery ratio, network load and message drop ratio, which are regarded as extremely important metrics for the evaluation of DTN routing protocols. The AFMR achieves improved network performance in terms of end-to-end delivery time (56.3%); enhanced message delivery ratio (60.0%); mitigation of message drop (63.5%) and reduced network load (26.1 %). The contributions of this thesis are to enhance the performance of DTN by significantly overcoming the intermittent connectivity and network partitioning problems in the network
    • …
    corecore