1,471 research outputs found

    Negative imaginary theorem with an application to robust control of a crane system

    Get PDF
    This paper presents an integral sliding mode (ISM) control for a case of negative imaginary (NI) systems. A gantry crane system (GCS) is considered in this work. ISM is a nonlinear control method introducing significant properties of precision, robustness, stress-free tuning and implementation. The GCS model considered in this work is derived based on the x direction and sway motion of the payload. The GCS is a negative imaginary (NI) system with a single pole at the origin. ISM consist of two blocks; the inner block made up of a pole placement controller (NI controller), designed using linear matrix inequality for robustness and outer block made up of sliding mode control to reject disturbances. The ISM is designed to control position tracking and anti-swing payload motion. The robustness of the control scheme is tested with an input disturbance of a sine wave signal. The simulation results show the effectiveness of the control scheme

    Input-Shaped Model Reference Control Using Sliding Mode Design for Sway Suppression of An Industrial Overhead Crane

    Get PDF
    Input-shaped model reference control using sliding mode design is a proven method for controlling systems with parameter variations and disturbance. However, this method has never been reported for an industrial overhead crane, which is operated under nonlinear elements such as acceleration and deceleration limits caused by inverters for driving a crane in speed control mode. The successful implementation of this method will allow the crane to be operated in “hybrid mode”, which results in the fastest response from the feedforward control technique, unity magnitude zero vibration (UMZV) and tracking performance from the feedback control. This paper shows the implementation and experimental result of the input-shaped model reference control using sliding mode design for sway suppression of an industrial overhead crane. The control scheme was implemented on an industrial grade 1-ton overhead crane using a PLC and inverters. The experiments compared the control results of the UMZV and the presented control scheme on the industrial overhead crane in the cases that the system parameters are known and uncertain. When the parameters are uncertain, the presented method, with the feedback elements, provided the advantage of reducing residual vibration, while keeping the benefits of the UMZV performance

    Robust Control of Crane with Perturbations

    Get PDF
    In the presence of persistent perturbations in both unactuated and actuated dynamics of crane systems, an observer-based robust control method is proposed, which achieves the objective of trolley positioning and cargo swing suppression. By dealing with the unactuated and unknown perturbation as an augmented state variable, the system dynamics are transformed into a quasi-chain-of-integrators form based on which a reduced-order augmented-state observer is established to recover the perturbations appearing in the unactuated dynamics. A novel sliding manifold is constructed to improve the robust performance of the control system, and a linear control law is presented to make the state variables stay on the manifold in the presence of perturbations in unactuated dynamics. A Lyapunov function candidate is constructed, and the entire closed-loop system is proved rigorously to be exponentially stable at the equilibrium point. The effectiveness and robustness of the proposed observer-based robust controller are verified by numerical simulation results

    Control of an Underactuated Double-Pendulum Overhead Crane using Improved Model Reference Command Shaping: Design, Simulation and Experiment

    Get PDF
    This paper presents a new control scheme based on model reference command shaping (MRCS) for an overhead crane, with double-pendulum mechanism effects. The approach has an advantage in achieving an accurate trolley positioning, with low hook and payload oscillations, under various desired trolley positions and parameter uncertainties, without the requirement for measurement or estimation of system parameters. These are challenging in practice. The previously developed MRCS algorithm is improved in order to reduce its design complexity, as well as to ensure that it can be augmented with a feedback controller so that a concurrent controller tuning can be realised. The combined MRCS and feedback controller is used to achieve both, precise trolley positioning, and low hook and payload oscillations. To evaluate the effectiveness and the robustness of the approach, simulations and experiments using a nonlinear model and a laboratory double-pendulum crane are carried out. Under various desired positions and parameter uncertainties that involve varying the cable lengths (payload hoisting) and the payload mass variations, the superiority of the proposed approach is confirmed by achieving higher hook and payload oscillation reductions when compared with a recently proposed feedback controller. In addition, the desired trolley positions are achieved with smoother responses

    Proceedings of the 4th Baltic Mechatronics Symposium - Tallinn April 25, 2019

    Get PDF
    The Baltic Mechatronics Symposium is annual symposium with the objective to provide a forum for young scientists from Baltic countries to exchange knowledge, experience, results and information in large variety of fields in mechatronics. The symposium was organized in co-operation with Taltech and Aalto University. The venue of the symposium was Nordic Hotel Forum Tallinn.The symposium was organized parallel to the 12th International DAAAM Baltic Conference and 27th International Baltic Conference BALTMATTRIB 2019. The selected papers are published in Proceedings of Estonian Academy of Sciences indexed in ISI Web of Science. The content of the proceedings: 1. Continuous wet spinning of cellulose nanofibrils 2. Development of motor efficiency test setup for direct driven hydraulic actuator 3. Development of pressure former for continuous nanopaper manufacturing 4. Device for tree volume measurements 5. Effect of external load on rotor vibration 6. Granular jamming based gripper for heavy objects 7. Integrated car camera system for monitoring inner cabin and outer traffic 8. Inverted pendulum controlled with CNC control system 9. Multi-material mixer and extruder for 3D printing 10. Object detection and trajectory planning using a LIDAR for an automated overhead cran

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Payload's sway angle measurement for container in the crane system based on remote sensing

    Get PDF
    The demand for a high quickly measuring angle in the port crane system should be considered when the container has been transferred from one place to another place. It is significant to build the feedback linking of payload's angle in the integrated crane system. The value of accurate measurement of the angle can be used to optimize the crane control system. In this context, the design and implementation of the experimental setup associated with emulated cranes will be carried out. Several solutions for remote angle measurement were considered one of the considered solutions being represented by millimeter microwave radar sensors. Special developments of algorithms to calculate the sway angle of payload or container were considered as so as the real-time processing using Arduino Uno computation platform. The following objectives were successfully reached. 1. Development of remote sensing system for payload's swing angle measurement considering radars such the sensing devices; 2. Development of a novel angle algorithm measurement and real-time processing of data; 3. Development of a prototype characterized by real-time processing and remote detection capabilities considering short-range and long-range measurements, such as lidar sensor or radar sensor.A demanda por um ângulo de medição rápido e alto no sistema de guindaste portuário deve ser considerada quando o contêiner for transferido de um local para outro. É significativo construir a ligação de feedback do ângulo da carga útil no sistema de guindaste integrado. O valor da medição precisa do ângulo pode ser usado para otimizar o sistema de controle do guindaste. Neste contexto, será realizada a concepção e implementação da configuração experimental associada a gruas emuladas. Diversas soluções para medição remota de ângulos foram consideradas uma das soluções consideradas sendo representadas por sensores de micro-ondas milimetrados. Desenvolvimentos especiais de algoritmos para calcular o ângulo de oscilação da carga útil ou contêiner foram considerados, assim como o processamento em tempo real usando a plataforma de computação Arduino Uno. Os seguintes objetivos foram alcançados com sucesso. 1. Desenvolvimento de sistema de sensoriamento remoto para medição do ângulo de oscilação da carga útil considerando radares como os dispositivos de detecção; 2. Desenvolvimento de um novo algoritmo de medição de ângulos e processamento de dados em tempo real; 3. Desenvolvimento de um protótipo caracterizado por processamento em tempo real e capacidade de detecção remota considerando medições de curto e longo alcance, como sensor LIDAR ou sensor de radar

    Adaptive output-based command shaping for sway control of a 3D overhead crane with payload hoisting and wind disturbance

    Get PDF
    Payload hoisting and wind disturbance during crane operations are among the challenging factors that affect a payload sway and thus, affect the crane's performance. This paper proposes a new online adaptive output-based command shaping (AOCS) technique for an effective payload sway reduction of an overhead crane under the influence of those effects. This technique enhances the previously developed output-based command shaping (OCS) which was effective only for a fixed system and without external disturbances. Unlike the conventional input shaping design technique which requires the system's natural frequency and damping ratio, the proposed technique is designed by using the output signal and thus, an online adaptive algorithm can be formulated. To test the effectiveness of the AOCS, experiments are carried out using a laboratory overhead crane with a payload hoisting in the presence of wind, and with different payloads. The superiority of the method is confirmed by 82% and 29% reductions in the overall sway and the maximum transient sway respectively, when compared to the OCS, and two robust input shapers namely Zero Vibration Derivative-Derivative and Extra-Insensitive shapers. Furthermore, the method demonstrates a uniform crane's performance under all conditions. It is envisaged that the proposed method can be very useful in designing an effective controller for a crane system with an unknown payload and under the influence of external disturbances
    corecore