13,443 research outputs found

    A New Hybrid Method in Global Dynamic Path Planning of Mobile Robot

    Get PDF
    Path planning and real-time obstacle avoidance is the key technologies of mobile robot intelligence. But the efficiency of the global path planning is not very high. It is not easy to avoid obstacles in real time. Aiming at these shortcomings it is proposed that a global dynamic path planning method based on improved A* algorithm and dynamic window method. At first the improved A* algorithm is put forward based on the traditional A* algorithm in the paper. Its optimized heuristic search function is designed. They can be eliminated that the redundant path points and unnecessary turning points. Simulation experiment 1 results show that the planned path length is reduced greatly. And the path transition points are less, too. And then it is focused on the global dynamic path planning of fusion improved A* Algorithm and Dynamic Window Method. The evaluation function is constructed taking into account the global optimal path. The real time dynamic path is planning. On the basis of ensuring the optimal global optimization of the planning path, it is improved that the smoothness of the planning path and the local real-time obstacle avoidance ability. The simulation experiments results show that the fusion algorithm is not only the shorter length, but also the smoother path compared the traditional path planning algorithms with the fusion algorithm in the paper. It is more fit to the dynamics of the robot control. And when a dynamic obstacle is added, the new path can be gained. The barrier can be bypass and the robot is to reach the target point. It can be guaranteed the global optimality of the path. Finally the Turtlebot mobile robot was used to experiment. The experimental results show that the global optimality of the proposed path can be guaranteed by the fusion algorithm. And the planned global path is smoother. When the random dynamic obstacle occurs in the experiment, the robot can be real-time dynamic obstacle avoidance. It can re-plan the path. It can bypass the random obstacle to reach the original target point. The outputting control parameters are more conducive to the robot’s automatic control. The fusion method is used for global dynamic path planning of mobile robots in this paper. In summary the experimental results show that the method is good efficiency and real-time performance. It has great reference value for the dynamic path planning application of mobile robot

    An Improved VFF Approach for Robot Path Planning in Unknown and Dynamic Environments

    Get PDF
    Robot path planning in unknown and dynamic environments is one of the hot topics in the field of robot control. The virtual force field (VFF) is an efficient path planning method for robot. However, there are some shortcomings of the traditional VFF based methods, such as the local minimum problem and the higher computational complexity, in dealing with the dynamic obstacle avoidance. In this paper, an improved VFF approach is proposed for the real-time robot path planning, where the environment is unknown and changing. An area ratio parameter is introduced into the proposed VFF based approach, where the size of the robot and obstacles are considered. Furthermore, a fuzzy control module is added, to deal with the problem of obstacle avoidance in dynamic environments, by adjusting the rotation angle of the robot. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach

    A Cooperative Path Planning Algorithm for a Multiple Mobile Robot System in a Dynamic Environment

    Get PDF
    A practical path planning method for a multiple mobile robot system (MMRS) requires handling both the collision-free constraint and the kinematic constraint of real robots, the latter of which has to date been neglected by most path planning methods. In this paper, we present a practical cooperative path planning algorithm for MMRS in a dynamic environment. First, each robot uses an analytical method to plan an obstacle-avoidance path. Then, a distributed prioritized scheme is introduced to realize cooperative path planning. In the scheme, each robot calculates a priority value according to its situation at each instant in time, which will determine the robot\u27s priority. Higher-priority robots can ignore lower-priority robots, whereas lower-priority robots should avoid collisions with higher-priority robots. To minimize the path length for MMRS, a least path length constraint is added. The priority value is also calculated by a path cost function that takes the path length into consideration. Unlike other priority methods, the algorithm proposed is not time consuming; therefore, it is suitable for dynamic environments. Simulation results are presented to verify the effectiveness of the proposed algorithm

    Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in dynamic environments—a case study

    Get PDF
    Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision allows the detection and localization of a randomly moving obstacle. Path correction to avoid collision avoidance for such obstacles with robotic manipulator is achieved by exploiting an adaptive path planning module along with a dedicated robot control module, where the three modules run simultaneously. These sensing/smart capabilities allow the smooth interactions between the robot and its dynamic environment, where the robot needs to react to dynamic changes through autonomous thinking and reasoning with the reaction times below the average human reaction time. The experimental results demonstrate that effective human-robot and robot-robot interactions can be realized through the innovative integration of emerging sensing techniques, efficient planning algorithms and systematic designs

    Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in dynamic environments: a case study.

    Get PDF
    Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision allows the detection and localization of a randomly moving obstacle. Path correction to avoid collision avoidance for such obstacles with robotic manipulator is achieved by exploiting an adaptive path planning module along with a dedicated robot control module, where the three modules run simultaneously. These sensing/smart capabilities allow the smooth interactions between the robot and its dynamic environment, where the robot needs to react to dynamic changes through autonomous thinking and reasoning with the reaction times below the average human reaction time. The experimental results demonstrate that effective human-robot and robot-robot interactions can be realized through the innovative integration of emerging sensing techniques, efficient planning algorithms and systematic designs

    Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Full text link
    Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments
    • …
    corecore