1,811 research outputs found

    Knowledge visualization: From theory to practice

    Get PDF
    Visualizations have been known as efficient tools that can help users analyze com- plex data. However, understanding the displayed data and finding underlying knowl- edge is still difficult. In this work, a new approach is proposed based on understanding the definition of knowledge. Although there are many definitions used in different ar- eas, this work focuses on representing knowledge as a part of a visualization and showing the benefit of adopting knowledge representation. Specifically, this work be- gins with understanding interaction and reasoning in visual analytics systems, then a new definition of knowledge visualization and its underlying knowledge conversion processes are proposed. The definition of knowledge is differentiated as either explicit or tacit knowledge. Instead of directly representing data, the value of the explicit knowledge associated with the data is determined based on a cost/benefit analysis. In accordance to its importance, the knowledge is displayed to help the user under- stand the complex data through visual analytical reasoning and discovery

    Learning spatio-temporal representations for action recognition: A genetic programming approach

    Get PDF
    Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned

    FDive: Learning Relevance Models using Pattern-based Similarity Measures

    Full text link
    The detection of interesting patterns in large high-dimensional datasets is difficult because of their dimensionality and pattern complexity. Therefore, analysts require automated support for the extraction of relevant patterns. In this paper, we present FDive, a visual active learning system that helps to create visually explorable relevance models, assisted by learning a pattern-based similarity. We use a small set of user-provided labels to rank similarity measures, consisting of feature descriptor and distance function combinations, by their ability to distinguish relevant from irrelevant data. Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model, which classifies data according to the cluster affiliation. It also automatically prompts further relevance feedback to improve its accuracy. Uncertain areas, especially near the decision boundaries, are highlighted and can be refined by the user. We evaluate our approach by comparison to state-of-the-art feature selection techniques and demonstrate the usefulness of our approach by a case study classifying electron microscopy images of brain cells. The results show that FDive enhances both the quality and understanding of relevance models and can thus lead to new insights for brain research.Comment: 12 pages, 7 figures, 2 tables, LaTeX; corrected typo; added DO

    Computational composition strategies in audiovisual laptop performance

    Get PDF
    We live in a cultural environment in which computer based musical performances have become ubiquitous. Particularly the use of laptops as instruments is a thriving practice in many genres and subcultures. The opportunity to command the most intricate level of control on the smallest of time scales in music composition and computer graphics introduces a number of complexities and dilemmas for the performer working with algorithms. Writing computer code to create audiovisuals offers abundant opportunities for discovering new ways of expression in live performance while simultaneously introducing challenges and presenting the user with difficult choices. There are a host of computational strategies that can be employed in live situations to assist the performer, including artificially intelligent performance agents who operate according to predefined algorithmic rules. This thesis describes four software systems for real time multimodal improvisation and composition in which a number of computational strategies for audiovisual laptop performances is explored and which were used in creation of a portfolio of accompanying audiovisual compositions

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Sixth Biennial Report : August 2001 - May 2003

    No full text
    • …
    corecore